4 resultados para Conventional approach
em University of Queensland eSpace - Australia
Resumo:
An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Regular monitoring of wastewater characteristics is undertaken on most wastewater treatment plants. The data acquired during this process are usually filed and forgotten. However, systematic analysis of these data can provide useful insights into plant behaviour. Conventional graphical techniques are inadequate to give a good overall picture of how wastewater characteristics vary, with time and along the lagoon system. An approach based on the use of contour plots was devised that largely overcomes this problem. Superimposition of contour plots for different parameters can be used to gain a qualitative understanding of the nature and strength of relationships between the parameters. This is illustrated in an analysis of monitoring data for lagoon 115 East at the Western Treatment Plant, near Melbourne, Australia. In this illustrative analysis, relationships between ammonia removal rates and parameters such as chlorophyll a level and temperature are explored using a contour plot superimposition approach. It is concluded that this approach can help improve our understanding, not only of lagoon systems, but of other wastewater treatment systems as well.
Resumo:
Although the current level of organic production in industrialised countries amounts to little more than 1-2 percent, it is recognised that one of the major issues shaping agricultural output over the next several decades will be the demand for organic produce (Dixon et al. 2001). In Australia, the issues of healthy food and environmental concern contribute to increasing demand and market volumes for organic produce. However, in Indonesia, using more economical inputs for organic production is a supply-side factor driving organic production. For individual growers and processors, conversion from conventional to organic agriculture is often a challenging step, entailing a thorough revision of established practices and heightened market insecurity. This paper examines the potential for a systems approach to the analysis of the conversion process, to yield insights for household and community decisions. A framework for applying farming systems research to investigate the benefits of organic production in both Australia and Indonesia is discussed. The framework incorporates scope for farmer participation, crucial to the understanding of farming systems; analysis of production; and relationships to resources, technologies, markets, services, policies and institutions in their local cultural context. A systems approach offers the potential to internalise the external effects that may be constraining decisions to convert to organic production, and for the design of decision-making tools to assist households and the community. Systems models can guide policy design and serve as a mechanism for predicting the impact of changes to the policy and market environments. The increasing emphasis of farming systems research on community and environment in recent years is in keeping with the proposed application to organic production, processing and marketing issues. The approach will also facilitate the analysis of critical aspects of the Australian production, marketing and policy environment, and the investigation of these same features in an Indonesian context.