2 resultados para Control multivariable por desacoplo
em University of Queensland eSpace - Australia
Resumo:
In this paper, a new control design method is proposed for stable processes which can be described using Hammerstein-Wiener models. The internal model control (IMC) framework is extended to accommodate multiple IMC controllers, one for each subsystem. The concept of passive systems is used to construct the IMC controllers which approximate the inverses of the subsystems to achieve dynamic control performance. The Passivity Theorem is used to ensure the closed-loop stability. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.