7 resultados para Continuous Utility Functions
em University of Queensland eSpace - Australia
Resumo:
We investigate the role of local connectedness in utility theory and prove that any continuous total preorder on a locally connected separable space is continuously representable. This is a new simple criterion for the representability of continuous preferences, and is not a consequence of the standard theorems in utility theory that use conditions such as connectedness and separability, second countability, or path-connectedness. Finally we give applications to problems involving the existence of value functions in population ethics and to the problem of proving the existence of continuous utility functions in general equilibrium models with land as one of the commodities. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This note shows that, under appropriate conditions, preferences may be locally approximated by the linear utility or risk-neutral preference functional associated with a local probability transformation.
Resumo:
In this paper we study the Debreu Gap Lemma and its generalizations to totally ordered sets more general than (R, less than or equal to). We explain why it is important in economics to study utility functions which may not be real-valued and we build the foundations of a theory of continuity of such generalized utility functions. (C) 2004 Published by Elsevier B.V.
Resumo:
Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.
Resumo:
E. L. DeLosh, J. R. Busemeyer, and M. A. McDaniel (1997) found that when learning a positive, linear relationship between a continuous predictor (x) and a continuous criterion (y), trainees tend to underestimate y on items that ask the trainee to extrapolate. In 3 experiments, the authors examined the phenomenon and found that the tendency to underestimate y is reliable only in the so-called lower extrapolation region-that is, new values of x that lie between zero and the edge of the training region. Existing models of function learning, such as the extrapolation-association model (DeLosh et al., 1997) and the population of linear experts model (M. L. Kalish, S. Lewandowsky, & J. Kruschke, 2004), cannot account for these results. The authors show that with minor changes, both models can predict the correct pattern of results.
Resumo:
In this paper, we address some issue related to evaluating and testing evolutionary algorithms. A landscape generator based on Gaussian functions is proposed for generating a variety of continuous landscapes as fitness functions. Through some initial experiments, we illustrate the usefulness of this landscape generator in testing evolutionary algorithms.