29 resultados para Continuous Quantum Variables
em University of Queensland eSpace - Australia
Resumo:
We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.
Resumo:
We describe an implementation of quantum error correction that operates continuously in time and requires no active interventions such as measurements or gates. The mechanism for carrying away the entropy introduced by errors is a cooling procedure. We evaluate the effectiveness of the scheme by simulation, and remark on its connections to some recently proposed error prevention procedures.
Resumo:
We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
Resumo:
We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure called the entanglement of minimum bipartite entropy.
Resumo:
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.
Resumo:
We consider a universal set of quantum gates encoded within a perturbed decoherence-free subspace of four physical qubits. Using second-order perturbation theory and a measuring device modelled by an infinite set of harmonic oscillators, simply coupled to the system, we show that continuous observation of the coupling agent induces inhibition of the decoherence due to spurious perturbations. We thus advance the idea of protecting or even creating a decoherence-free subspace for processing quantum information.
Resumo:
Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of quantum disentangling protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73 +/- 0.02. A result achievable only by using quantum resources.
Resumo:
We present here a new approach to scalable quantum computing - a 'qubus computer' - which realizes qubit measurement and quantum gates through interacting qubits with a quantum communication bus mode. The qubits could be 'static' matter qubits or 'flying' optical qubits, but the scheme we focus on here is particularly suited to matter qubits. There is no requirement for direct interaction between the qubits. Universal two-qubit quantum gates may be effected by schemes which involve measurement of the bus mode, or by schemes where the bus disentangles automatically and no measurement is needed. In effect, the approach integrates together qubit degrees of freedom for computation with quantum continuous variables for communication and interaction.
Resumo:
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photons and a superposition of coherent states, from input single- and two-photon Fock states, respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam splitter. We transform the quantum system by postselecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using coherent states and experimentally measure fidelities that are only achievable using quantum resources.
Resumo:
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multimode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
Resumo:
This paper discusses methods for the optical teleportation of continuous-variable polarization states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarization states can be performed. Restricting ourselves to three squeezed beams, we demonstrate that polarization state teleportation can still exceed the classical limit. The three-squeezer schemes involve either the use of quantum nondemolition measurement or biased entanglement generated from a single squeezed beam. We analyze the efficacies of these schemes in terms of fidelity, signal transfer coefficients, and quantum correlations.
Resumo:
We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements, and "small" coherent superposition resource states.
Resumo:
We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light. Using the theory of quantum parameter estimation, we show that this can be done more accurately when feedback is used (adaptive phase estimation) than by any scheme not involving feedback (nonadaptive phase estimation) in which the beam is measured as it arrives at the detector. Such schemes not involving feedback include all those based on heterodyne detection or instantaneous canonical phase measurements. We also demonstrate that the superior accuracy of adaptive phase estimation is present in a regime conducive to observing it experimentally.
Resumo:
A quantum circuit implementing 5-qubit quantum-error correction on a linear-nearest-neighbor architecture is described. The canonical decomposition is used to construct fast and simple gates that incorporate the necessary swap operations allowing the circuit to achieve the same depth as the current least depth circuit. Simulations of the circuit's performance when subjected to discrete and continuous errors are presented. The relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis on determining the concatenated error correction threshold.