72 resultados para Continued training

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of 7 weeks of high- and low-velocity resistance training on strength and sprint running performance in nine male elite junior sprint runners (age 19.0 +/- 1.4 years, best 100 m times 10.89 +/- 0.21 s; mean +/- s). The athletes continued their sprint training throughout the study, but their resistance training programme was replaced by one in which the movement velocities of hip extension and flexion, knee extension and flexion and squat exercises varied according to the loads lifted (i.e. 30-50% and 70-90% of 1-RM in the high- and low-velocity training groups, respectively). There were no between-group differences in hip flexion or extension torque produced at 1.05, 4.74 or 8.42 rad . s(-1), 20 m acceleration or 20 m 'flying' running times, or 1-RM squat lift strength either before or after training. This was despite significant improvements in 20 m acceleration time (P < 0.01), squat strength (P< 0.05), isokinetic hip flexion torque at 4.74 rad . s(-1) and hip extension torque at 1.05 and 4.74 rad . s(-1) for the athletes as a whole over the training period. Although velocity-specific strength adaptations have been shown to occur rapidly in untrained and non-concurrently training individuals, the present results suggest a lack of velocity-specific performance changes in elite concurrently training sprint runners performing a combination of traditional and semi-specific resistance training exercises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to compare the effects of two high-intensity, treadmill interval-training programs on 3000-m and 5000-m running performance. Maximal oxygen uptake ((V) over dot O-2max), the running speed associated with (V) over dot O-2max (nu (V) over dot O-2max), the time for which nu (V) over dot O-2max can be maintained (T-max), running economy (RE), ventilatory threshold (VT) and 3000-m and 5000-m running times were determined in 27 well-trained runners. Subjects were then randomly assigned to three groups; (1) 60% T-max (2) 70% T-max and (3) control. Subjects in the control group continued their normal training and subjects in the two T-max groups undertook a 4-week treadmill interval-training program with the intensity set at nu (V) over dot O-2max and the interval duration at the assigned T-max. These subjects completed two interval-training sessions per week (60% T-max = six intervals/session, 70% T-max group = five intervals/session). Subjects were re-tested on all parameters at the completion of the training program. There was a significant improvement between pre- and post-training values in 3000-m time trial (TT) performance in the 60% T-max group compared to the 70% T,,a, and control groups [mean (SE); 60% T-max = 17.6 (3.5) s, 70% T-max = 6.3 (4.2) s, control = 0.5 (7.7) s]. There was no significant effect of the training program on 5000-m TT performance [60% T-max = 25.8 (13.8) s, 70% T-max = 3.7 (11.6) s, control = 9.9 (13.1) s]. Although there were no significant improvements in (V) over dot O-2max, nu (V) over dot (2max) and RE between groups, changes in (V) over dot O-2max and RE were significantly correlated with the improvement in the 3000-m TT. Furthermore, VT and T-max were significantly higher in the 60% Tmax group post-compared to pre-training. In conclusion, 3000-m running performance can be significantly improved in a group of well-trained runners, using a 4-week treadmill interval training program at nu (V) over dot O-2max with interval durations of 60% T-max.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n = 8), or training involving finger abduction-adduction without external resistance (n = 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance-training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance-training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the physiological adaptations that occur following endurance training in previously sedentary and recreationally active individuals are relatively well understood, the adaptations to training in already highly trained endurance athletes remain unclear. While significant improvements in endurance performance and corresponding physiological markers are evident following submaximal endurance training in sedentary and recreationally active groups, an additional increase in submaximal training (i.e. volume) in highly trained individuals does not appear to further enhance either endurance performance or associated physiological variables [e.g. peak oxygen uptake (V-dot O2peak), oxidative enzyme activity]. It seems that, for athletes who are already trained, improvements in endurance performance can be achieved only through high-intensity interval training (HIT). The limited research which has examined changes in muscle enzyme activity in highly trained athletes, following HIT, has revealed no change in oxidative or glycolytic enzyme activity, despite significant improvements in endurance performance (p < 0.05). Instead, an increase in skeletal muscle buffering capacity may be one mechanism responsible for an improvement in endurance performance. Changes in plasma volume, stroke volume, as well as muscle cation pumps, myoglobin, capillary density and fibre type characteristics have yet to be investigated in response to HIT with the highly trained athlete. Information relating to HIT programme optimisation in endurance athletes is also very sparse. Preliminary work using the velocity at which V-dot O2max is achieved (Vmax) as the interval intensity, and fractions (50 to 75%) of the time to exhaustion at Vmax (Tmax) as the interval duration has been successful in eliciting improvements in performance in long-distance runners. However, Vmax and Tmax have not been used with cyclists. Instead, HIT programme optimisation research in cyclists has revealed that repeated supramaximal sprinting may be equally effective as more traditional HIT programmes for eliciting improvements in endurance performance. Further examination of the biochemical and physiological adaptations which accompany different HIT programmes, as well as investigation into the optimal HIT programme for eliciting performance enhancements in highly trained athletes is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To the Editor: The increase in medical graduates expected over the next decade presents a huge challenge to the many stakeholders involved in providing their prevocational and vocational medical training. 1 Increased numbers will add significantly to the teaching and supervision workload for registrars and consultants, while specialist training and access to advanced training positions may be compromised. However, this predicament may also provide opportunities for innovation in the way internships are delivered. Although facing these same challenges, regional and rural hospitals could use this situation to enhance their workforce by creating opportunities for interns and junior doctors to acquire valuable experience in non-metropolitan settings. We surveyed a representative sample (n = 147; 52% of total cohort) of Year 3 Bachelor of Medicine and Bachelor of Surgery students at the University of Queensland about their perceptions and expectations of their impending internship and the importance of its location (ie, urban/metropolitan versus regional/rural teaching hospitals) to their future training and career plans. Most students (n = 127; 86%) reported a high degree of contemplation about their internship choice. Issues relating to career progression and support ranked highest in their expectations. Most perceived internships in urban/metropolitan hospitals as more beneficial to their future career prospects compared with regional/rural hospitals, but, interestingly, felt that they would have more patient responsibility and greater contact with and supervision by senior staff in a regional setting (Box). Regional and rural hospitals should try to harness these positive perceptions and act to address any real or perceived shortcomings in order to enhance their future workforce.2 They could look to establish partnerships with rural clinical schools3 to enhance recruitment of interns as early as Year 3. To maximise competitiveness with their urban counterparts, regional and rural hospitals need to offer innovative training and career progression pathways to junior doctors, to combat the perception that internships in urban hospitals are more beneficial to future career prospects. Partnerships between hospitals, medical schools and vocational colleges, with input from postgraduate medical councils, should provide vertical integration4 in the important period between student and doctor. Work is underway to more closely evaluate and compare the intern experience across regional/rural and urban/metropolitan hospitals, and track student experiences and career choices longitudinally. This information may benefit teaching hospitals and help identify the optimal combination of resources necessary to provide quality teaching and a clear career pathway for the expected influx of new interns.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 12 week kayak training programme was evaluated in children who either had or did not have the anthropometric characteristics identified as being unique to senior elite sprint kayakers. Altogether, 234 male and female school children were screened to select 10 children with and 10 children without the identified key anthropometric characteristics. Before and after training, the children completed an all-out 2 min kayak ergometer simulation test; measures of oxygen consumption, plasma lactate and total work accomplished were recorded. In addition, a 500 m time trial was performed at weeks 3 and 12. The coaches were unaware which 20 children possessed those anthropometric characteristics deemed to favour development of kayak ability. All children improved in both the 2 min ergometer simulation test and 500 m time trial. However, boys who were selected according to favourable anthropometric characteristics showed greater improvement than those without such characteristics in the 2 min ergometer test only. In summary, in a small group of children selected according to anthropometric data unique to elite adult kayakers, 12 weeks of intensive kayak training did not influence the rate of improvement of on-water sprint kayak performance.