3 resultados para Contact thermal resistance
em University of Queensland eSpace - Australia
Resumo:
All copulations in the eastern mosquitofish, Gambusia holbrooki, are coercive-and-achieved by force. Female G. holbrooki never appear to cooperate with males, but vigorously resist matings at all times. We examined the role of females within a sexually coercive mating system by investigating the ability of female G. holbrooki to resist forced copulations after acclimation to 16 degrees C and 32 degrees C for 4-5 weeks. We also examined burst swimming performance of female G. holbrooki after acclimation, as this trait is likely to underlie a female's ability to resist forced matings. We predicted that if female G. holbrooki indiscriminately resist matings from all males, acclimation would enhance female resistance at their acclimation temperature. However, we found that it did not. We also predicted that if females are able to influence the outcome of mating interactions, acclimation to an optimal thermal environment may induce females to reduce resistance. In support of this prediction, females acclimated at 32 degrees C were able to modify their resistance behaviour between exposure to 16 degrees C and 32 degrees C. The rate of copulations experienced by 32 inverted perpendicular C-acclimated females was 2.5 times greater at 32 degrees C than at 16 degrees C. In addition, acclimation at 32 degrees C significantly enhanced burst swimming performance at 32 degrees C but no effect of acclimation was observed at 16 degrees C. Our results suggest that female G. holbrooki are able to play a greater role in determining the outcome of sexual coercive mating interactions than previously thought. (c) 2006 The Association for the Shidy of Animal Behavioor. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an analysis of the thermomechanical behavior of hollow circular cylinders of functionally graded material (FGM). The solutions are obtained by a novel limiting process that employs the solutions of homogeneous hollow circular cylinders, with no recourse to the basic theory or the equations of non-homogeneous thermoclasticity. Several numerical cases are studied, and conclusions are drawn regarding the general properties of thermal stresses in the FGM cylinder. We conclude that thermal stresses necessarily occur in the FGM cylinder, except in the trivial case of zero temperature. While heat resistance may be improved by sagaciously designing the material composition, careful attention must be paid to the fact that thermal stresses in the FGM cylinder are governed by more factors than are its homogeneous counterparts. The results that are presented here will serve as benchmarks for future related work. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Sulfadoxine is predominantly used in combination with pyrimethamine, commonly known as Fansidar, for the treatment of Plasmodium falciparum. This combination is usually less effective against Plasmodium vivax, probably due to the innate refractoriness of parasites to the sulfadoxine component. To investigate this mechanism of resistance by P. vivax to sulfadoxine, we cloned and sequenced the P. vivax dhps (pvdhps) gene. The protein sequence was determined, and three-dimensional homology models of dihydropteroate synthase (DHPS) from P. vivax as well as P. falciparum were created. The docking of sulfadoxine to the two DHPS models allowed us to compare contact residues in the putative sulfadoxine-binding site in both species. The predicted sulfadoxine-binding sites between the species differ by one residue, V585 in P. vivax, equivalent to A613 in P. falciparum. V585 in P. vivax is predicted by energy minimization to cause a reduction in binding of sulfadoxine to DHPS in P. vivax compared to P. falciparum. Sequencing dhps genes from a limited set of geographically different P. vivax isolates revealed that V585 was present in all of the samples, suggesting that V585 may be responsible for innate resistance of P. vivax to sulfadoxine. Additionally, amino acid mutations were observed in some P. vivax isolates in positions known to cause resistance in P. falciparum, suggesting that, as in P. falciparum, these mutations are responsible for acquired increases in resistance of P. vivax to sulfadoxine.