2 resultados para Conservation equation

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al (2002 J. Phys. B: At. Mol. Opt. Phys. 35 1555). This derivation does not rely on the concept of local energy and momentum conservation and is based on a quasiclassical Wigner function representation of a 'high temperature' master equation for a Bose gas, which includes only modes below an energy cut-off ER that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provides noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation and by the feasibility of its numerical implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.