62 resultados para Conformal array
em University of Queensland eSpace - Australia
Resumo:
We present the results of Australia Telescope Compact Array (ATCA) H i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H i mass of at least 1.8 x 10(10) M-., most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H i components and their relation to the known H ii regions. No H i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA J2001-4659, was detected 4.4 arcmin NE from NGC 6845B and has an H i mass of similar to5 x 10(8) M-.. No H i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of 15-40 M-. yr(-1).
Resumo:
Electron backscattering diffraction has been applied on polycrystalline diamond films grown using microwave plasma assisted chemical vapour deposition on silicon substrate, in order to provide a map of the individual diamond grains, grain boundary, and the crystal orientation of discrete crystallites. The nucleation rate and orientation are strongly affected by using a voltage bias on the substrate to influence and enhance the nucleation process, the bias enhanced nucleation process. In this work, the diamond surface is mapped using electron backscattering diffraction, then a layer of a few microns is ion milled away exposing a lower layer for analysis and so on. This then permits a three dimensions reconstruction of the film texture.
Resumo:
Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using a Radial Guide Field Matching Method, an investigation is performed into reducing the height of an electronically steered circular array of monopole antennas composed of a central active element surrounded by passive elements being either short- or open-circuited. It is shown that a considerable height reduction can be achieved using top hats attached to monopoles ends and by applying dielectric coating underneath the top hats. The trade-off in achieving height reduction is narrower impedance bandwidth.
Resumo:
The advantages of antennas that can resemble the shape of the body to which they are attached are obvious. However, electromagnetic modeling of such unusually shaped antennas can be difficult. In this paper, the commercially available software SolidWorks(TM) is used for accurately drawing complex shapes in conjunction with the electromagnetic software FEKO(TM) to model the EM behavior of conformal antennas. The application of SolidWorks and custom-written software allows all the required information that forms the analyzed structure to be automatically inserted into FEKO, and gives the user complete control over the antenna being modeled. This approach is illustrated by a number of simulation examples of single, wideband, multi-band planar and curved patch antennas.
Resumo:
The authors present a super-fast scanning (SFS) technique for phased array weather radar applications. The fast scanning feature of the SFS technique is described and its drawbacks identified. Techniques which combat these drawbacks are also presented. A concept design phased array radar system (CDPAR) is used as a benchmark to compare the performance of a conventional scanning phased array radar system with the SFS technique. It is shown that the SFS technique, in association with suitable waveform processing, can realise four times the scanning speed and achieve similar accuracy compared to the conventional phased array benchmark.
Resumo:
The alpha-defensin antimicrobial peptide family is defined by a unique tridisulfide array. To test whether this invariant structural feature determines alpha-defensin bactericidal activity, mouse cryptdin-4 (Crp4) tertiary structure was disrupted by pairs of site-directed Ala for Cys substitutions. In a series of Crp4 disulfide variants whose cysteine connectivities were confirmed using NMR spectroscopy and mass spectrometry, mutagenesis did not induce loss of function. To the contrary, the in vitro bactericidal activities of several Crp4 disulfide variants were equivalent to or greater than those of native Crp4. Mouse Paneth cell alpha-defensins require the proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7), prompting an analysis of the relative sensitivities of native and mutant Crp4 and proCrp4 molecules to degradation by MMP-7. Although native Crp4 and the alpha-defensin moiety of proCrp4 resisted proteolysis completely, all disulfide variants were degraded extensively by MMP-7. Crp4 bactericidal activity was eliminated by MMP-7 cleavage. Thus, rather than determining alpha-defensin bactericidal activity, the Crp4 disulfide arrangement confers essential protection from degradation by this critical activating proteinase.
Resumo:
The non-semisimple gl(2)k current superalgebra in the standard basis and the corresponding non-unitary conformal field theory are investigated. Infinite families of primary fields corresponding to all finite-dimensional irreducible typical and atypical representations of gl(212) and three (two even and one odd) screening currents of the first kind are constructed explicitly in terms of ten free fields. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
This paper presents a rectangular array antenna with a suitable signal-processing algorithm that is able to steer the beam in azimuth over a wide frequency band. In the previous approach, which was reported in the literature, an inverse discrete Fourier transform technique was proposed for obtaining the signal weighting coefficients. This approach was demonstrated for large arrays in which the physical parameters of the antenna elements were not considered. In this paper, a modified signal-weighting algorithm that works for arbitrary-size arrays is described. Its validity is demonstrated in examples of moderate-size arrays with real antenna elements. It is shown that in some cases, the original beam-forming algorithm fails, while the new algorithm is able to form the desired radiation pattern over a wide frequency band. The performance of the new algorithm is assessed for two cases when the mutual coupling between array elements is both neglected and taken into account.
Resumo:
A phased-array antenna with switched-beam elements used to combat interference in an indoor wireless communication system is described. The array uses I-bit phase shifters applied to its elements in order to point its main beam in a desired direction and internal switching of elements in order to form nulls towards interference. The array's capability of suppressing interference is verified by studying its radiation patterns and by performing interference-rejection experiments in an indoor multipath environment. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A practical, small-size, dual-helical antenna array mounted on a mobile handset model is designed for use as diversity/MIMO receiving antennas. The array is rigorously studied with respect to its diversity performance and the achievable channel capacity. It is found that a very low correlation coefficient, a high diversity gain, an equal-mean branch SNR, and a relatively matched input impedance can be achieved at the same time. It is shown that, at a remarkably small antenna separation (similar to 0.05 lambda), the signal correlation can be reduced to nearly zero, an almost ideal independent operation of the diversity antennas. The increase in MIMO channel capacity is 100% over a single antenna system. Both measured and simulation results are presented.
Resumo:
We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.
Resumo:
A new transceive system for chest imaging for MRI applications is presented. A focused, eight-element transceive torso phased array coil is designed to investigate transmitting a focused radiofrequency field deep within the torso and to enhance signal homogeneity in the heart region. The system is used in conjunction with the SENSE reconstruction technique to enable focused parallel imaging. A hybrid finite-difference-time-domain/method-of-moments method is used to accurately predict the radiofrequency behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept, which shows that radiofrequency field focusing with SENSE reconstruction is theoretically achievable. (c) 2005 Wiley-Liss, Inc.
Resumo:
This letter presents an analytical model for evaluating the Bit Error Rate (BER) of a Direct Sequence Code Division Multiple Access (DS-CDMA) system, with M-ary orthogonal modulation and noncoherent detection, employing an array antenna operating in a Nakagami fading environment. An expression of the Signal to Interference plus Noise Ratio (SINR) at the output of the receiver is derived, which allows the BER to be evaluated using a closed form expression. The analytical model is validated by comparing the obtained results with simulation results.
Resumo:
To describe single-walled carbon nanotube (SWNT) arrays, we propose a self-similar array model. For isolated SWNT bundles, the self-similar array model is consistent with the classical triangular array model; for SWNT bundle arrays, it can present hierarchy structures and specify different array configurations. Based on this self-similar array model, we calculated the energetics of SWNT arrays, investigated the driving force for the formation of macroscopic SWNT arrays, and briefly discussed the hierarchy structures in real macroscopic SWNT arrays. (c) 2005 American Institute of Physics.