129 resultados para Concrete filled double skin steel tube
em University of Queensland eSpace - Australia
Resumo:
Despite experimental evidences, the contributions of the concrete slab and composite action to the vertical shear strength of simply supported steel-concrete composite beams are not considered in current design codes, which lead to conservative designs. In this paper, the finite element method is used to investigate the flexural and shear strengths of simply supported composite beams under combined bending and shear. A three-dimensional finite element model has been developed to account for geometric and material nonlinear behavior of composite beams, and verified by experimental results. The verified finite element model is than employed to quantify the contributions of the concrete slab and composite action to the moment and shear capacities of composite beams. The effect of the degree of shear connection on the vertical shear strength of deep composite beams loaded in shear is studied. Design models for vertical shear strength including contributions from the concrete slab and composite action and for the ultimate moment-shear interaction ate proposed for the design of simply supported composite beams in combined bending and shear. The proposed design models provide a consistent and economical design procedure for simply supported composite beams.
Resumo:
A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Resumo:
Deterioration of concrete or reinforcing steel through excessive contaminant concentration is often the result of repeated wetting and drying cycles. At each cycle, the absorption of water carries new contaminants into the unsaturated concrete. Nuclear Magnetic Resonance (NMR) is used with large concrete samples to observe the shape of the wetting profile during a simple one-dimensional wetting process. The absorption of water by dry concrete is modelled by a nonlinear diffusion equation with the unsaturated hydraulic diffusivity being a strongly nonlinear function of the moisture content. Exponential and power functions are used for the hydraulic diffusivity and corresponding solutions of the diffusion equation adequately predict the shape of the experimental wetting profile. The shape parameters, describing the wetting profile, vary little between different blends and are relatively insensitive to subsequent re-wetting experiments allowing universal parameters to be suggested for these concretes.
Role of dietary factors in the development of basal cell cancer and squamous cell cancer of the skin
Resumo:
The role of dietary factors in the development of skin cancer has been investigated for many years; however, the results of epidemiologic studies have not been systematically reviewed. This article reviews human studies of basal cell cancer (BCC) and squamous cell cancer (SCC) and includes all studies identified in the published scientific literature investigating dietary exposure to fats, retinol, carotenoids, vitamin E, vitamin Q and selenium. A total of 26 studies were critically reviewed according to study design and quality of the epidemiologic evidence. Overall, the evidence suggests a positive relationship between fat intake and BCC and SCC, an inconsistent association for retinol, and little relation between beta-carotene and BCC or SCC development. There is insufficient evidence on which to make a judgment about an association of other carotenoids with skin cancer. The evidence for associations between vitamin E, vitamin C, and selenium and both BCC and SCC is weak. Many of the existing studies contain limitations, however, and further well-designed and implemented studies are required to clarify the role of diet in skin cancer. Additionally, the role of other dietary factors, such as flavonoids and other polyphenols, which have been implicated in skin cancer development in animal models, needs to be investigated.
Resumo:
A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Eczema is common, occurring in 15%-20% of infants and young children. For some infants it can be a severe chronic illness with a major impact on the child's general health and on the family. A minority of children will continue to have eczema as adults. The exact cause of eczema is not clear, but precipitating or aggravating factors may include food allergens (most commonly, egg) or environmental allergens/irritants, climatic conditions, stress. and genetic predisposition. Management of eczema consists of education; avoidance of triggers and allergens; liberal use of emollients or topical steroids to control inflammation; use of antihistamines to reduce itch; and treatment of infection if present. Treatment with systemic agents may be required in severe cases, but must be supervised by an immunologist. Urticaria (hives) may affect up to a quarter of people at some time in their lives. Acute urticaria is more common in children, while chronic urticaria is more common in adults. Chronic urticaria is not life-threatening, but the associated pruritus and unsightly weals can cause patients much distress and significantly affect their daily lives. Angioedema coexists with urticaria in about 50% of patients. It typically affects the lips, eyelids, palms, soles and genitalia. Management of urticaria is through education; avoidance of triggers and allergens (where relevant); use of antihistamines to reduce itch; and short-term use of corticosteroids when antihistamine therapy is ineffective. Referral is indicated for patients with resistant disease.
Resumo:
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (
Resumo:
A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.
Resumo:
Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.
Resumo:
Concrete to house exterior.
Resumo:
Concrete to house exterior.