5 resultados para Complexe Mre11-Rad50-Xrs2
em University of Queensland eSpace - Australia
Resumo:
Aims: To analyse the expression of proteins involved in DNA double strand break detection and repair in the luminal and myoepithelial compartments of benign breast lesions and malignant breast tumours with myoepithelial differentiation. Methods: Expression of the ataxia telangiectasia (ATM) and p53 proteins was immunohistochemically evaluated in 18 benign and malignant myoepithelial tumours of the breast. Fifteen benign breast lesions with prominent myoepithelial compartment were also evaluated for these proteins, in addition to those in the MRE11-Rad50-NBS1 (MRN) complex, and the expression profiles were compared with those seen in eight independent non-cancer (normal breast) samples and in the surrounding normal tissues of the benign and malignant tumours examined. Results: ATM expression was higher in the myoepithelial compartment of three of 15 benign breast lesions and lower in the luminal compartment of eight of these lesions compared with that found in the corresponding normal tissue compartments. Malignant myoepithelial tumours overexpressed ATM in one of 18 cases. p53 was consistently negative in benign lesions and was overexpressed in eight of 18 malignant tumours. In benign breast lesions, expression of the MRN complex was significantly more reduced in myoepithelial cells (up to 73%) than in luminal cells (up to 40%) (p = 0.0005). Conclusions: Malignant myoepithelial tumours rarely overexpress ATM but are frequently positive for p53. In benign breast lesions, expression of the MRN complex was more frequently reduced in the myoepithelial than in the luminal epithelial compartment, suggesting different DNA repair capabilities in these two cell types.
Resumo:
Mutations in components of the Mre 11/Rad50/Nbs1 complex give rise to genetic disorders characterized by neurological abnormalities, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Evidence exists that this complex associates with chromatin during DNA replication and acts as a sensor of double strand breaks (dsbs) in DNA after exposure to radiation. A series of recent reports provides additional support that the complex senses breaks in DNA and relays this information to ATM, mutated in ataxia-telangiectasia (A-T), which in turn activates pathways for cell cycle checkpoint activation. Paradoxically members of the Mre11 complex are also downstream of ATM in these pathways. Here, Lavin attempts to make sense of this sensing mechanism with reference to a series of recent reports on the topic. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangietasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.