58 resultados para Colour Vision

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the billfish family are highly visual predatory teleosts inhabiting the open ocean. Little is known about their visual abilities in detail, but past studies have indicated that these fishes were:ere likely to be monochromats. This study however, presents evidence of two anatomically distinct cone types in billfish. The cells are arranged in a regular mosaic pattern of single and twin cones as in many fishes, and this arrangement suggests that the different cone types also show different spectral sensitivity, which is the basis for colour vision. First measurements using microspectrophotometry (MSP) revealed a peak absorption of the rod pigment at 484 nm, indicating that MSP, despite technical difficulties, will be a decisive tool in proving colour vision in these offshore fishes. When hunting, billfish such as the sailfish flash bright blue bars on their sides. This colour reflects largely in ultraviolet (UV) light at 350 nm as revealed by spectrophotometric measurements. Billfish lenses block light of wavelengths below 400 nm, presumably rendering the animal blind to the UV component of its own body colour. Interestingly at least two prey species of billfish have lenses transmitting light in the UV waveband and are therefore likely to perceive a large fraction of the UV peak found in the blue bar of the sailfish. The possible biological significance of this finding is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular investigation of the origin of colour vision has discovered five visual pigment (opsin) genes, all of which are expressed in an agnathan (jawless) fish, the lamprey Geotria australis. Lampreys are extant representatives of an ancient group of vertebrates whose origins are thought to date back to at least the early Cambrian, approximately 540 million years ago [1.]. Phylogenetic analysis has identified the visual pigment opsin genes of G. australis as orthologues of the major classes of vertebrate opsin genes. Therefore, multiple opsin genes must have originated very early in vertebrate evolution, prior to the separation of the jawed and jawless vertebrate lineages, and thereby provided the genetic basis for colour vision in all vertebrate species. The southern hemisphere lamprey Geotria australis (Figure 1A,B) possesses a predominantly cone-based visual system designed for photopic (bright light) vision [2. S.P. Collin, I.C. Potter and C.R. Braekevelt, The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specializations and the characterisation and phylogeny of photoreceptor types. Brain Behav. Evol. 54 (1999), pp. 96–111.2. and 3.]. Previous work identified multiple cone types suggesting that the potential for colour vision may have been present in the earliest members of this group. In order to trace the molecular evolution and origins of vertebrate colour vision, we have examined the genetic complement of visual pigment opsins in G. australis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than one hundred years ago, Grant Allen suggested that colour vision in primates, birds and insects evolved as an adaptation for foraging on colourful advertisements of plants-fruits and flowers. Recent studies have shown that well developed colour vision appeared long before fruits and flowers evolved. Thus, colour vision is generally beneficial for many animals, not only for those eating colourful food. Primates are the only placental mammals that have trichromatic colour vision. This may indicate either that trichromacy is particularly useful for primates or that primates are unique among placental mammals in their ability to utilise the signals of three spectrally distinct types of cones or both. Because fruits are an important component of the primate diet, primate trichromacy could have evolved as a specific adaptation for foraging on fruits. Alternatively, primate trichromacy could have evolved as an adaptation for many visual tasks. Comparative studies of mammalian eyes indicate that primates are the only placental mammals that have in their retina a pre-existing neural machinery capable of utilising the signals of an additional spectral type of cone. Thus, the failure of non-primate placental mammals to evolve trichromacy can be explained by constraints imposed on the wiring of retinal neurones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The visual sense of the Indian blue-shouldered peafowl Pavo cristatus was investigated with respect to the spectral absorption characteristics of the retinal photoreceptors, the spectral transmittance of the ocular media and the topographic distribution of cells in the retinal ganglion cell layer. Microspectrophotometry revealed a single class of rod, four spectrally distinct types of single cone and a single class of double cone. In the case of the single cone types, which contained visual pigments with wavelengths of maximum absorbance (lambda(max)) at 424, 458, 505 and 567 nm, spectral filtering by the ocular media and the different cone oil droplets with which each visual pigment is associated gives predicted peak spectral sensitivities of 432, 477, 537 and 605 nm, respectively. Topographic analysis of retinal ganglion cell distribution revealed a large central area of increased cell density (at peak, 35,609 cells mm(-2)) with a poorly defined visual streak extending nasally. The peafowl has a calculated maximum spatial resolution (visual acuity) in the lateral visual field of 20.6 cycles degrees(-1). These properties of the peafowl eye are discussed with respect to its visual ecology and are compared with those of other closely related species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Paradise whiptail (Pentapodus paradiseus) has distinct reflective stripes on its head and body. The reflective stripes contain a dense layer of physiologically active iridophores, which act as multilayer reflectors. The wavelengths reflected by these stripes can change from blue to red in 0.25 s. Transmission electron microscopy revealed that the iridophore cells contain plates that are, on average, 51.4 nm thick. This thickness produces a stack, which acts as an ideal quarter-wavelength multilayer reflector (equal optical thickness of plates and spaces) in the blue, but not the red, region of the spectrum. When skin preparations were placed into hyposmotic physiological saline, the peak wavelength of the reflected light shifted towards the longer (red) end of the visible spectrum. Hyperosmotic saline reversed this effect and shifted the peak wavelength towards shorter (blue/UV) wavelengths. Norepinephrine (100 mumol l(-1)) shifted the peak wavelength towards the longer end of the spectrum, while adenosine (100 mumol l(-1)) reversed the effects of norepinephrine. The results from this study show that the wavelength changes are elicited by a change of similar to70 nm in the distance between adjacent plates in the iridophore cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The eyes of most diurnal reptiles and birds contain coloured retinal filters-oil droplets. Although these filters are widespread, their adaptive advantage remains uncertain. To understand why coloured oil droplets appeared and were retained during evolution, I consider both the benefits and the costs of light filtering in the retina. Oil droplets decrease cone quantum catch and reduce the overlap in sensitivity between spectrally adjacent cones. The reduction of spectral overlap increases the volume occupied by object colours in a cone space, whereas the decrease in quantum catch increases noise, and thus reduces the discriminability of similar colours. The trade-off between these two effects determines the total benefit of oil droplets. Calculations show that coloured oil droplets increase the number of object colours that can be discriminated, and thus are beneficial for colour vision.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a growing body of data on avian eyes, including measurements of visual pigment and oil droplet spectral absorption, and of receptor densities and their distributions across the retina. These data are sufficient to predict psychophysical colour discrimination thresholds for light-adapted eyes, and hence provide a basis for relating eye design to visual needs. We examine the advantages of coloured oil droplets, UV vision and tetrachromacy for discriminating a diverse set of avian plumage spectra under natural illumination. Discriminability is enhanced both by tetrachromacy and coloured oil droplets. Oil droplets may also improve colour constancy. Comparison of the performance of a pigeon's eye, where the shortest wavelength receptor peak is at 410 nm, with that of the passerine Leiothrix, where the ultraviolet-sensitive peak is at 365 nm, generally shows a small advantage to the latter, but this advantage depends critically on the noise level in the sensitivity mechanism and on the set of spectra being viewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reef fishes present the observer with the most diverse and stunning assemblage of animal colours anywhere on earth. The functions of some of these colours and their combinations are examined using new non-subjective spectrophotometer ic measurements of the colours of fishes and their habitat. Conclusions reached are as follows: (i) the spectra of colours in high spatial frequency patterns are often well designed to be very conspicuous to a colour vision system at close range but well camouflaged at a distance; (ii) blue and yellow the most frequently used colours in reef fishes, may be good for camouflage or communication depending on the background they are viewed against; and (iii) reef fishes use a combination of colour and behaviour to regulate their conspicuousness and crypsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative abundance and topographical distribution of retinal cone photoreceptors was measured in 19 bird species to identify possible correlations between photoreceptor complement and visual ecology. In contrast to previous studies, all five types of cone photoreceptor were distinguished, using bright field and epifluorescent light microscopy, in four retinal quadrants. Land birds tended to show either posterior dorsal to anterior ventral or anterior dorsal to posterior ventral gradients in cone photoreceptor distribution, fundus coloration and oil droplet pigmentation across the retina. Marine birds tended to show dorsal to ventral gradients instead. Statistical analyses showed that the proportions of the different cone types varied significantly across the retinae of all species investigated. Cluster analysis was performed on the data to identify groups or clusters of species on the basis of their oil droplet complement. Using the absolute percentages of each oil droplet type in each quadrant for the analysis produced clusters that tended to reflect phylogenetic relatedness between species rather than similarities in their visual ecology. Repeating the analysis after subtracting the mean percentage of a given oil droplet type across the whole retina (the 'eye mean') from the percentage of that oil droplet type in each quadrant, i.e. to give a measure of the variation about the mean, resulted in clusters that reflected diet, feeding behaviour and habitat to a greater extent than phylogeny.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand how bees, birds, and fish may use colour vision for food selection and mate choice, we reconstructed views of biologically important objects taking into account the receptor spectral sensitivities. Reflectance spectra a of flowers, bird plumage, and fish skin were used to calculate receptor quantum catches. The quantum catches were then coded by red, green, and blue of a computer monitor; and powers, birds, and fish were visualized in animal colours. Calculations were performed for different illumination conditions. To simulate colour constancy, we used a von Kries algorithm, i.e., the receptor quantum catches were scaled so that the colour of illumination remained invariant. We show that on land this algorithm compensates reasonably well for changes of object appearance caused by natural changes of illumination, while in water failures of von Kries colour constancy are prominent. (C) 2000 John Wiley & Sons, Inc.