2 resultados para Colorado River aqueduct.
em University of Queensland eSpace - Australia
Resumo:
The standard model for the migration of the monarch butterfly in western North America has hitherto been movement in the autumn to overwintering sites in coastal California, followed by a return inland by most individuals in the spring. This model is based largely on observational and limited tagging and recovery data. In this paper we test the model by plotting many years of museum and collection records on a monthly basis on a map of the region. Our plots suggest a movement of Oregon, Washington and other north-western populations of summer butterflies to California in the autumn, but movement of more north-easterly populations (e.g. from Idaho and Montana) along two pathways through Nevada, Utah and Arizona to Mexico. The more westerly of these two pathways may follow the Colorado River south as indicated by museum records and seasonal temperature data. The eastern pathway may enter northern Utah along the western scarp of the Wasatch Mountains and run south through Utah and Arizona. Further analysis of distributions suggests that monarch butterflies in the American West occur primarily along rivers, and there are observations indicating that autumn migrants often follow riparian corridors. More data are needed to test our new model; we suggest the nature of the data required. (c) 2005 The Linnean Society of London.
Resumo:
Groundwater-dependent riparian biota is known to be sensitive to changes in soil and groundwater salinity in estuarine systems. The groundwater flow and salinity behaviour in a phreatic aquifer adjoining a partially penetrating, tidal. estuary is investigated through two-dimensional numerical experiments for a lateral cross-section, which explore the influence of factors, such as aquifer and soil materials, tidal amptitudes, and regional groundwater hydraulic gradients. The density contrast between estuarine water and the fresh groundwater drives saltwater penetration of the aquifer even in the case of a marked groundwater hydraulic gradient towards the estuary. We show that tidal fluctuations in estuaries can significantly affect the groundwater salinity distribution in adjacent density-stratified phreatic aquifers. This has consequences for the expected distribution of salinity-sensitive biota in the hyporheic zone as well as vegetation and fauna dependent on water in the riparian soil and aquifer. The shape of the dense saltwater wedge propagating into the adjacent groundwater system is also modified by the estuarine tidal signal, although this effect appears to have only minor influence on the maximum distance penetrated into the aquifer (i.e., location of the 'toe' of the wedge). Tide-induced changes to riparian groundwater salinity are advection-driven, as evidenced by the modified time-averaged groundwater flow dynamics. (c) 2006 Elsevier B.V. All rights reserved.