57 resultados para Colorado River
em University of Queensland eSpace - Australia
Resumo:
The standard model for the migration of the monarch butterfly in western North America has hitherto been movement in the autumn to overwintering sites in coastal California, followed by a return inland by most individuals in the spring. This model is based largely on observational and limited tagging and recovery data. In this paper we test the model by plotting many years of museum and collection records on a monthly basis on a map of the region. Our plots suggest a movement of Oregon, Washington and other north-western populations of summer butterflies to California in the autumn, but movement of more north-easterly populations (e.g. from Idaho and Montana) along two pathways through Nevada, Utah and Arizona to Mexico. The more westerly of these two pathways may follow the Colorado River south as indicated by museum records and seasonal temperature data. The eastern pathway may enter northern Utah along the western scarp of the Wasatch Mountains and run south through Utah and Arizona. Further analysis of distributions suggests that monarch butterflies in the American West occur primarily along rivers, and there are observations indicating that autumn migrants often follow riparian corridors. More data are needed to test our new model; we suggest the nature of the data required. (c) 2005 The Linnean Society of London.
Resumo:
Groundwater-dependent riparian biota is known to be sensitive to changes in soil and groundwater salinity in estuarine systems. The groundwater flow and salinity behaviour in a phreatic aquifer adjoining a partially penetrating, tidal. estuary is investigated through two-dimensional numerical experiments for a lateral cross-section, which explore the influence of factors, such as aquifer and soil materials, tidal amptitudes, and regional groundwater hydraulic gradients. The density contrast between estuarine water and the fresh groundwater drives saltwater penetration of the aquifer even in the case of a marked groundwater hydraulic gradient towards the estuary. We show that tidal fluctuations in estuaries can significantly affect the groundwater salinity distribution in adjacent density-stratified phreatic aquifers. This has consequences for the expected distribution of salinity-sensitive biota in the hyporheic zone as well as vegetation and fauna dependent on water in the riparian soil and aquifer. The shape of the dense saltwater wedge propagating into the adjacent groundwater system is also modified by the estuarine tidal signal, although this effect appears to have only minor influence on the maximum distance penetrated into the aquifer (i.e., location of the 'toe' of the wedge). Tide-induced changes to riparian groundwater salinity are advection-driven, as evidenced by the modified time-averaged groundwater flow dynamics. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
As seen from jetty, looking back towards house and crow's nest.
Resumo:
40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval. Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles. The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.
Resumo:
External wall and alcove.
Resumo:
View down hall to living room.
Resumo:
View through dining and living room areas to external deck.
Resumo:
View from living room to kitchen.
Resumo:
Timber deck with sliding timber shutters off the master bedroom
Resumo:
Folding timber windows and roof over.
Resumo:
As seen from neighbouring property.
Resumo:
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 degrees C, 26 degrees C, 28 degrees C and 31 degrees C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 degrees C and 28 degrees C had wider heads than hatchlings incubated at 24 degrees C and 31 degrees C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 degrees C than at 26 degrees C, 28 degrees C and 31 degrees C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass.