3 resultados para Codeine
em University of Queensland eSpace - Australia
Resumo:
Background: Codeine is frequently added to paracetamol to treat post-operative dento-alveolar pain; studies have shown effectiveness in relief of post-operative pain at high doses but at the expense of central nervous and gastrointestinal side effects. There has been no trial to compare the efficacy and safety of paracetamol 1000mg with paracetamol 1000mg combined with codeine 30mg. Method. A randomized, single centre, double-blind prospective parallel group trial was performed to compare paracetamol 1000mg with paracetamol 1000mg with codeine 30mg for the relief of pain following surgical removal of impacted third molars, and analysed on an intention-to-treat (ITT) basis. Eighty-two patients were assigned randomly to receive either drug for a maximum of three doses. Patients recorded their pain intensity one hour after surgery and hourly thereafter for 12 hours. Results: The average increase in pain intensity over 12 hours was significantly less in patients receiving paracetamol plus codeine than in those receiving paracetamol alone (p=0.03) -1.81cm/h compared with 0.45cm/h - a difference of 1.13cm/h (95 per cent Cl: 0.18 to 2.08). Of the patients who received the paracetamol codeine combination, 62 per cent used escape medication compared with 75 per cent of those on paracetamol alone (p=0.20). There was no significant difference between the two groups in the proportion of patients experiencing adverse events (P=0.5). Conclusion: A combination of 1000mg paracetamol and 30mg codeine was significantly more effective in controlling pain for 12 hours following third molar removal, with no significant difference of side effects during the 12 hour period studied.
Resumo:
A sensitive and reproducible solid-phase extraction (SPE) method for the quantification of oxycodone in human plasma was developed. Varian Certify SPE cartridges containing both C-8 and benzoic acid functional groups were the most suitable for the extraction of oxycodone and codeine (internal standard), with consistently high (greater than or equal to 80%) and reproducible recoveries. The elution mobile phase consisted of 1.2 ml of butyl chloride-isopropanol (80:20, v/v) containing 2% ammonia. The quantification limit for oxycodone was 5.3 pmol on-column. Within-day and inter-day coefficients of variation were 1.2% and 6.8% respectively for 284 nM oxycodone and 9.5% and 6.2% respectively for 28.4 nM oxycodone using 0.5-ml plasma aliquots. (C) 1998 Elsevier Science BN. All rights reserved.
Resumo:
Our previous studies indicate that oxycodone is a putative kappa-opioid agonist, whereas morphine is a well documented mu-opioid agonist. Because there is limited information regarding the development of tolerance to oxycodone, this study was designed to 1) document the development of tolerance to the antinociceptive effects of chronically infused i.v. oxycodone relative to that for i.v. morphine and 2) quantify the degree of antinociceptive cross-tolerance between morphine and oxycodone in adult male Dark Agouti (DA) rats. Antinociceptive testing was performed using the tail-flick latency test. Complete antinociceptive tolerance was achieved in 48 to 84 h after chronic infusion of equi-antinociceptive doses of i.v. oxycodone (2.5 mg/24 h and 5 mg/24 h) and i.v. morphine (10 mg/24 h and 20 mg/24 h, respectively). Dose-response curves for bolus doses of i.v. and i.c.v. morphine and oxycodone were produced in naive, morphine-tolerant, and oxycodone-tolerant rats. Consistent with our previous findings that oxycodone and morphine produce their intrinsic antinociceptive effects through distinctly different opioid receptor populations, there was no discernible cross-tolerance when i.c.v. oxycodone was given to morphine-tolerant rats. Similarly, only a low degree of cross-tolerance (approximate to 24%) was observed after i.v. oxycodone administration to morphine-tolerant rats. By contrast, both i.v. and i.c.v. morphine showed a high degree of cross-tolerance (approximate to 71% and approximate to 54%, respectively) in rats rendered tolerant to oxycodone. Taken together, these findings suggest that, after parenteral but not supraspinal administration, oxycodone is metabolized to a mu-opioid agonist metabolite, thereby explaining asymmetric and incomplete cross-tolerance between oxycodone and morphine.