22 resultados para Coarse Graining

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moisture content of the coarse coking coal product from the centrifuges of preparation plants was investigated to evaluate the contribution of three types of water: that held internally in pores, that in fillets at points of contacts between the particles, and the moisture covering the surface. A standardised laboratory centrifuge test was used to measure the total non-centrifugable moisture (NCM) content and also the quantity held in internal pores, called NCMi. The fillet moisture NCMf was estimated by means of a formulation which relies on experimentally measured holdup volumes, supplemented by a physical model. The surface moisture NCMs could then be derived by difference. The NCMf, which depends on the body force, the particle size and the surface tension and contact angle of the liquid, ranges from effectively zero for large particles to 10% for fines. The surface moisture NCMs is of the order of 0.5% for high rank coals and increases to 4.5% for lower rank coals. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been observed in several Jameson cell installation where the source for flotation feed is deslime screens, that the recovery of coal particles greater than 0.5 mm is not as great as that of finer material. Consequently, a research project was undertaken at a CHPP in the Bowen Basin Queensland to assess the possibility of increasing the recovery of coarser particles (+0.5 mm) within the downcomer of the Jameson cell. The effect of decreasing turbulence and agitation in a commercial-scale downcomer was investigated to assess the effect oil the recovery of both coarse and fine coal particles. This paper details the findings of the test work, summarising the results relating to differences in the operating parameters within the downcomer. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assumption in analytical solutions for flow from surface and buried point sources of an average water content, (θ) over bar, behind the wetting front is examined. Some recent work has shown that this assumption fitted some field data well. Here we calculated (θ) over bar using a steady state solution based on the work by Raats [1971] and an exponential dependence of the diffusivity upon the water content. This is compared with a constant value of (θ) over bar calculated from an assumption of a hydraulic conductivity at the wetting front of 1 mm day(-1) and the water content at saturation. This comparison was made for a wide range of soils. The constant (θ) over bar generally underestimated (θ) over bar at small wetted radii and overestimated (θ) over bar at large radii. The crossover point between under and overestimation changed with both soil properties and flow rate. The largest variance occurred for coarser texture soils at low-flow rates. At high-flow rates in finer-textured soils the use of a constant (θ) over bar results in underestimation of the time for the wetting front to reach a particular radius. The value of (θ) over bar is related to the time at which the wetting front reaches a given radius. In coarse-textured soils the use of a constant value of (θ) over bar can result in an error of the time when the wetting front reaches a particular radius, as large as 80% at low-flow rates and large radii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 1000 marine and terrestrial pollen diagrams and Some hundreds of vertebrate faunal sequences have been studied in the Austral-Asian region bisected by the PEPII transect, from the Russian arctic extending south through east Asia, Indochina, southern Asia, insular Southeast Asia (Sunda), Melanesia, Australasia (Sahul) and the western south Pacific. The majority of these records are Holocene but sufficient data exist to allow the reconstruction of the changing biomes over at least the past 200,000 years. The PEPII transect is free of the effects of large northern ice caps yet exhibits vegetational change in glacial cycles of a similar scale to North America. Major processes that can be discerned are the response of tropical forests in both lowlands and uplands to glacial cycles, the expansion of humid vegetation at the Pleistocene-Holocene transition and the change in faunal and vegetational controls as humans occupy the region. There is evidence for major changes in the intensity of monsoon and El Nino-Southern oscillation variability both on glacial-interglacial and longer time scales with much of the region experiencing a long-term trend towards more variable and/or drier climatic conditions. Temperature variation is most marked in high latitudes and high altitudes with precipitation providing the major climate control in lower latitude, lowland areas. At least some boundary shifts may be the response of vegetation to changing CO2 levels in the atmosphere. Numerous questions of detail remain, however, and current resolution is too coarse to examine the degree of synchroneity of millennial scale change along the transect. (C) 2003 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent increasing applications for cast Al-Si alloys are particularly driven by the need for lightweighting components in the automotive sector. To improve mechanical properties, elements such as strontium, sodium and antimony can be added to modify the eutectic silicon from coarse and plate-like to fine and fibrous morphology. It is only recently being noticed that the morphological transformation resulting from eutectic modification is also accompanied by other, equally significant, but often unexpected changes. These changes can include a 10-fold increase in the eutectic grain size, redistribution of low-melting point phases and porosity as well as surface finish, consequently leading to variations in casting quality. This paper shows the state-of-the-art in understanding the mechanism of eutectic nucleation and growth in Al-Si alloys, inspecting samples, both quenched and uninterrupted, on the macro, micro and nano-scale. It shows that significant variations in eutectic nucleation and growth dynamics occur in AI-Si alloys as a function of the type and amount of modifier elements added. The key role of AIP particles in nucleating silicon is demonstrated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different abrasive wear tests have been applied to materials with hardnesses ranging from 80 HV (aluminium) to 1700 HV (tungsten carbide). The tests were: dry sand rubber wheel (DSRbrW); a similar test using a steel wheel (DSStlW); a new combined impact-abrasion test (FIA). The DSRbrW results were as expected, giving generally decreasing wear with increasing hardness. White cast irons and tool steels containing coarse, hard carbide particles performed better than more homogeneous materials of comparable hardness. When normalized to load and distance, the DSStlW results for the homogeneous materials were similar to the DSRbrW results. The multi-phase materials performed poorly in the DSStlW test, with volume loss for high-speed steel (880 HV) higher than that of aluminium. Within this group, wear increased with increasing hardness. These unexpected results are explained in terms of (a) differential friction coefficients of wheel and specimen, (b) increased fracture of sand, and (c) introduction of microfracture wear mechanisms. The FIA combined impact-abrasion results lacked clear correlations with hardness. The span of relative wear rates was similar to that reported for materials in ball mills. White cast irons at maximum hardness performed fairly poorly and showed evidence of microfracture. (C) 1997 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling and simulation studies were carried out at 26 cement clinker grinding circuits including tube mills, air separators and high pressure grinding rolls in 8 plants. The results reported earlier have shown that tube mills can be modelled as several mills in series, and the internal partition in tube mills can be modelled as a screen which must retain coarse particles in the first compartment but not impede the flow of drying air. In this work the modelling has been extended to show that the Tromp curve which describes separator (classifier) performance can be modelled in terms of d(50)(corr), by-pass, the fish hook, and the sharpness of the curve. Also the high pressure grinding rolls model developed at the Julius Kruttschnitt Mineral Research Centre gives satisfactory predictions using a breakage function derived from impact and compressed bed tests. Simulation studies of a full plant incorporating a tube mill, HPGR and separators showed that the models could successfully predict the performance of the another mill working under different conditions. The simulation capability can therefore be used for process optimization and design. (C) 2001 Elsevier Science Ltd. All rights reserved.