32 resultados para Coal mines and mining.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical modelling has been used to examine the relationship between the results of two commonly used methods of assessing the propensity of coal to spontaneous combustion, the R70 and Relative Ignition Temperature tests, and the likely behaviour in situ. The criticality of various parameters has been examined and a method of utilising critical self-heating parameters has been developed. This study shows that on their own, the laboratory test results do not provide a reliable guide to in situ behaviour but can be used in combination to considerably increase the ability to predict spontaneous combustion behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the three years to June 2005, 959 injuries associated with continuous miners (CMs), shuttle cars (SCs), load–haul–dump and personnel transport (PT) were reported by NSW underground coal mines, comprising 23% of all injuries reported. The present paper reports an analysis of the narrative field accompanying these reports to determine opportunities for controlling injury risks. The most common combinations of activity and mechanism were: strain while handling CM cable (96 injuries); caught between or struck by moving parts while bolting on a CM (86 injuries); strains while bolting on CM (54 injuries); and slipping off a CM during access, egress or other activity (60 injuries). For the other equipment considered, the common injury mechanism was the vehicle running over a pothole or other roadway abnormality causing the driver or passengers to be injured (169 injuries). Potential control measures include: monorails for CM services; hydraulic cable reelers; handrails on CM platforms; redesign of CM platforms and bolting rigs to reduce reach distances during drilling and bolting; improvements to guarding of bolting controls; standardisation and shape coding of bolting controls; two handed fast feed; improvements in underground roadway maintenance, vehicle suspension, visibility and seating; and pedestrian proximity warning devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO2 Geosequestration is seen by many worldwide scientists and engineers as a leading prospective solution to the global warming problem arising from excessive CO2 and other greenhouse gas emissions. CO2 geosequestration in coal seams has two important strategic benefits: the process has an extremely low risk of leakage, due to the adsorbed state of the CO2 and the known reservoir context of essentially-zero leakage into which it is be injected; the second benefit arises from the valuable by-product, clean burning coalbed methane gas. This paper presents the authors’ experience, knowledge and perspective on what coal properties and engineering processes would favour implementing a demonstration or commercial CO2 storage-in-coal project, in Queensland, Australia. As such, it may be considered a template for screening studies to select the optimum coal seam reservoir, and for preliminary studies in designing the injection system and predicting production response to the technology. The paper concludes by examining the current knowledge gaps of CO2 geosequestration in coal, identifying further basic and applied research topics.