17 resultados para Coal gasification, Underground
em University of Queensland eSpace - Australia
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the three years to June 2005, 959 injuries associated with continuous miners (CMs), shuttle cars (SCs), load–haul–dump and personnel transport (PT) were reported by NSW underground coal mines, comprising 23% of all injuries reported. The present paper reports an analysis of the narrative field accompanying these reports to determine opportunities for controlling injury risks. The most common combinations of activity and mechanism were: strain while handling CM cable (96 injuries); caught between or struck by moving parts while bolting on a CM (86 injuries); strains while bolting on CM (54 injuries); and slipping off a CM during access, egress or other activity (60 injuries). For the other equipment considered, the common injury mechanism was the vehicle running over a pothole or other roadway abnormality causing the driver or passengers to be injured (169 injuries). Potential control measures include: monorails for CM services; hydraulic cable reelers; handrails on CM platforms; redesign of CM platforms and bolting rigs to reduce reach distances during drilling and bolting; improvements to guarding of bolting controls; standardisation and shape coding of bolting controls; two handed fast feed; improvements in underground roadway maintenance, vehicle suspension, visibility and seating; and pedestrian proximity warning devices.
Resumo:
In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Resumo:
The rates of reduction of FeO from iron-saturated FeO-CaO-Al2O3-SiO2 slags by graphite, coke, bituminous coal and anthracitic coal chars at temperatures in the range 1 673-1873 K have been measured using a sessile drop technique. The extents of reaction were determined using EPMA analysis of quenched samples, and on line gas analysis using a quadrupole mass spectrometer. The reaction rates have been shown to be dependent critically on carbon type. For the reaction geometry used in this investigation the reduction rates of graphite and coke are observed to be faster than with coal chars. This unexpected finding is shown to be associated with differences in the dominant chemical and mass transfer mechanisms occurring at the reaction interface. High reaction rates are observed to occur with the formation of liquid Fe-C alloy product and the associated gasification of carbon from the alloy. The rates of reduction by coal chars are determined principally by the chemical reaction at the carbon/gas interface and slag phase mass transfer.
Resumo:
There is interest in the use of sugar cane waste biomass for electricity cogeneration, by integrated gasification combined cycle (IGCC) processes. This paper describes one aspect of an overall investigation into the reactivity of cane wastes under pressurized IGGC conditions, for input into process design. There is currently a gap in understanding the morphological transformations experienced by cane waste biomass undergoing conversion to char during pressurized gasification, which is addressed by this work. Char residuals remaining after pressurized pyrolysis and carbon dioxide gasification were analysed by optical microscope, nitrogen (BET) adsorption analysis, SEM/EDS, TEM/EDS and XPS techniques. The amorphous cane plant silica structures were found to remain physically intact during entrained flow gasification, but chemically altered in the presence of other inorganic species. The resulting crystalline silicates were mesoporous (with surface areas of the order of 20 m(2) g(-1)) and contributed to much of the otherwise limited pore volume present in the residual chars. Coke deposition and intimate blending of the carbonaceous and inorganic species was identified. Progressive sintering of the silicates appeared to trap coke deposits in the pore network. As a result ash residuals showed significant organic contents, even after extensive additional oxidation in air. The implications of the findings are that full conversion of cane trash materials under pressurized IGCC conditions may be significantly hampered by the silica structures inherent in these biomass materials and that further research of the contributing phenomena is recommended.