13 resultados para Clustering Analysis

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have undertaken two-dimensional gel electrophoresis proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of gel-based experiments not all protein spots are detected across all samples in an experiment, and hence datasets are invariably incomplete. New approaches are therefore required for the analysis of such graduated datasets. We approached this problem in two ways. Firstly, we applied a missing value imputation technique to calculate missing data points. Secondly, we combined a singular value decomposition based hierarchical clustering with the expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have shown that while imputation of missing data was a useful method to improve the statistical analysis of such data sets, this was of limited use in differentiating between the samples investigated, and highlighted a small number of candidate proteins for further investigation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the data can be partitioned into a specified number of clusters g by first fitting a mixture model with g components. An outright clustering of the data is then obtained by assigning an observation to the component to which it has the highest estimated posterior probability of belonging; that is, the ith cluster consists of those observations assigned to the ith component (i = 1,..., g). The focus is on the use of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous. But attention is also given to the case of mixed data, where the observations consist of both continuous and discrete variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of mammalian transcripts identified by full-length cDNA projects and genome sequencing projects is increasing remarkably. Clustering them into a strictly nonredundant and comprehensive set provides a platform for functional analysis of the transcriptome and proteome, but the quality of the clustering and predictive usefulness have previously required manual curation to identify truncated transcripts and inappropriate clustering of closely related sequences. A Representative Transcript and Protein Sets (RTPS) pipeline was previously designed to identify the nonredundant and comprehensive set of mouse transcripts based on clustering of a large mouse full-length cDNA set (FANTOM2). Here we propose an alternative method that is more robust, requires less manual curation, and is applicable to other organisms in addition to mouse. RTPSs of human, mouse, and rat have been produced by this method and used for validation. Their comprehensiveness and quality are discussed by comparison with other clustering approaches. The RTPSs are available at ftp://fantom2.gsc.riken.go.jp/RTPS/. (C). 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal mixture models are often used to cluster continuous data. However, conventional approaches for fitting these models will have problems in producing nonsingular estimates of the component-covariance matrices when the dimension of the observations is large relative to the number of observations. In this case, methods such as principal components analysis (PCA) and the mixture of factor analyzers model can be adopted to avoid these estimation problems. We examine these approaches applied to the Cabernet wine data set of Ashenfelter (1999), considering the clustering of both the wines and the judges, and comparing our results with another analysis. The mixture of factor analyzers model proves particularly effective in clustering the wines, accurately classifying many of the wines by location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The objectives of this study were to examine the extent of clustering of smoking, high levels of television watching, overweight, and high blood pressure among adolescents and whether this clustering varies by socioeconomic position and Cognitive function. Methods: This study was a cross-sectional analysis of 3613 (1742 females) participants of an Australian birth cohort who were examined at age 14. Results: Three hundred fifty-three (9.8%) of the participants had co-occurrence of three or four risk factors. Risk factors clustered in these adolescents with a greater number of participants than would be predicted by assumptions of independence having no risk factors and three or four risk factors. The extent of clustering tended to be greater in those from lower-income families and among those with lower cognitive function. The age-adjusted ratio of observed to expected cooccurrence of three or four risk factors was 2.70 (95% confidence interval [Cl], 1.80-4.06) among those from low-income families and 1.70 (95% Cl, 1.34-2.16) among those from more affluent families. The ratio among those with low Raven's scores (nonverbal reasoning) was 2.36 (95% Cl, 1.69-3.30) and among those with higher scores was 1.51 (95% Cl, 1.19-1.92); similar results for the WRAT 3 score (reading ability) were 2.69 (95% Cl, 1.85-3.94) and 1.68 (95% Cl, 1.34-2.11). Clustering did not differ by sex. Conclusion: Among adolescents, coronary heart disease risk factors cluster, and there is some evidence that this clustering is greater among those from families with low income and those who have lower cognitive function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: The clustering of gene profiles across some experimental conditions of interest contributes significantly to the elucidation of unknown gene function, the validation of gene discoveries and the interpretation of biological processes. However, this clustering problem is not straightforward as the profiles of the genes are not all independently distributed and the expression levels may have been obtained from an experimental design involving replicated arrays. Ignoring the dependence between the gene profiles and the structure of the replicated data can result in important sources of variability in the experiments being overlooked in the analysis, with the consequent possibility of misleading inferences being made. We propose a random-effects model that provides a unified approach to the clustering of genes with correlated expression levels measured in a wide variety of experimental situations. Our model is an extension of the normal mixture model to account for the correlations between the gene profiles and to enable covariate information to be incorporated into the clustering process. Hence the model is applicable to longitudinal studies with or without replication, for example, time-course experiments by using time as a covariate, and to cross-sectional experiments by using categorical covariates to represent the different experimental classes. Results: We show that our random-effects model can be fitted by maximum likelihood via the EM algorithm for which the E(expectation) and M(maximization) steps can be implemented in closed form. Hence our model can be fitted deterministically without the need for time-consuming Monte Carlo approximations. The effectiveness of our model-based procedure for the clustering of correlated gene profiles is demonstrated on three real datasets, representing typical microarray experimental designs, covering time-course, repeated-measurement and cross-sectional data. In these examples, relevant clusters of the genes are obtained, which are supported by existing gene-function annotation. A synthetic dataset is considered too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: The relationships among the different eating disorders that exist in the community are poorly understood, especially for residual disorders in which bingeing or purging occurs in the absence of other behaviors. Objective: To examine a community sample for the number of mutually exclusive weight and eating profiles. Design: Data regarding lifetime eating disorder symptoms and weight range were submitted to a latent profile analysis. Profiles were compared regarding personality, current eating and weight, retrospectively reported life events, and lifetime depressive psychopathology. Setting: Longitudinal study among female twins from the Australian Twin Registry in whom eating was assessed by a telephone interview. Participants: A community sample of 1002 twins (individuals) who had participated in earlier waves of data collection. Main Outcome Measures: Number and clinical character of latent profiles. Results: The best fit was a 5-profile solution with women who were (1) of normal weight with few lifetime eating disorders (4.3%), (2) overweight (10.6% had a lifetime eating disorder), (3) underweight and generally had no eating disorders except for 5.3% who had restricting anorexia nervosa, (4) of low to normal weight (89.0% had a lifetime eating disorder), and (5) obese (37.0% had a lifetime eating disorder). Each profile contained more than 1 type of lifetime eating disorder except for the third profile. Women in the first and third profiles had the best functioning, with women in the fourth and fifth profiles having similarly poorer functioning. The women in the fourth group had a symptom profile distinctive from the other 4 groups in terms of severity; they were also more likely to have had lifetime major depression and suicidality. Conclusion: Lifetime weight ranges and the severity of eating disorder symptoms affected clustering more than the type of eating disorder symptom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of life has been shown to be poor among people living with chronic hepatitis C However, it is not clear how this relates to the presence of symptoms and their severity. The aim of this study was to describe the typology of a broad array of symptoms that were attributed to hepatitis C virus (HCV) infection. Phase I used qualitative methods to identify symptoms. In Phase 2, 188 treatment-naive people living with HCV participated in a quantitative survey. The most prevalent symptom was physical tiredness (86%) followed by irritability (75%), depression (70%), mental tiredness (70%), and abdominal pain (68%). Temporal clustering of symptoms was reported in 62% of participants. Principal components analysis identified four symptom clusters: neuropsychiatric (mental tiredness, poor concentration, forgetfulness, depression, irritability, physical tiredness, and sleep problems); gastrointestinal (day sweats, nausea, food intolerance, night sweats, abdominal pain, poor appetite, and diarrhea); algesic (joint pain, muscle pain, and general body pain); and dysesthetic (noise sensitivity, light sensitivity, skin. problems, and headaches). These data demonstrate that symptoms are prevalent in treatment-naive people with HCV and support the hypothesis that symptom clustering occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a network module detection approach which combines a rapid and robust clustering algorithm with an objective measure of the coherence of the modules identified. The approach is applied to the network of genetic regulatory interactions surrounding the tumor suppressor gene p53. This algorithm identifies ten clusters in the p53 network, which are visually coherent and biologically plausible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite mixture models are being increasingly used to model the distributions of a wide variety of random phenomena. While normal mixture models are often used to cluster data sets of continuous multivariate data, a more robust clustering can be obtained by considering the t mixture model-based approach. Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data where the number of observations n is very large relative to their dimension p. As the approach using the multivariate normal family of distributions is sensitive to outliers, it is more robust to adopt the multivariate t family for the component error and factor distributions. The computational aspects associated with robustness and high dimensionality in these approaches to cluster analysis are discussed and illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the application of a new technique, rough clustering, to the problem of market segmentation. Rough clustering produces different solutions to k-means analysis because of the possibility of multiple cluster membership of objects. Traditional clustering methods generate extensional descriptions of groups, that show which objects are members of each cluster. Clustering techniques based on rough sets theory generate intensional descriptions, which outline the main characteristics of each cluster. In this study, a rough cluster analysis was conducted on a sample of 437 responses from a larger study of the relationship between shopping orientation (the general predisposition of consumers toward the act of shopping) and intention to purchase products via the Internet. The cluster analysis was based on five measures of shopping orientation: enjoyment, personalization, convenience, loyalty, and price. The rough clusters obtained provide interpretations of different shopping orientations present in the data without the restriction of attempting to fit each object into only one segment. Such descriptions can be an aid to marketers attempting to identify potential segments of consumers.