63 resultados para Closed-Form Expressions
em University of Queensland eSpace - Australia
Resumo:
Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.
Resumo:
The long performance of an isothermal fixed bed reactor undergoing catalyst poisoning is theoretically analyzed using the dispersion model. First order reaction with dth order deactivation is assumed and the model equations are solved by matched asymptotic expansions for large Peclet number. Simple closed-form solutions, uniformly valid in time, are obtained.
Resumo:
Two basic representations of principal-agent relationships, the 'state-space' and 'parameterized distribution' formulations, have emerged. Although the state-space formulation appears more natural, analytical studies using this formulation have had limited success. This paper develops a state-space formulation of the moral-hazard problem using a general representation of production under uncertainty. A closed-form solution for the agency-cost problem is derived. Comparative-static results are deduced. Next we solve the principal's problem of selecting the optimal output given the agency-cost function. The analysis is applied to the problem of point-source pollution control. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We examine the mean flux across a homogeneous membrane of a charged tracer subject to an alternating, symmetric voltage waveform. The analysis is based on the Nernst-Planck flux equation, with electric field subject to time dependence only. For low frequency electric fields the quasi steady-state flux can be approximated using the Goldman model, which has exact analytical solutions for tracer concentration and flux. No such closed form solutions can be found for arbitrary frequencies, however we find approximations for high frequency. An approximation formula for the average flux at all frequencies is also obtained from the two limiting approximations. Numerical integration of the governing equation is accomplished by use of the numerical method of lines and is performed for four different voltage waveforms. For the different voltage profiles, comparisons are made with the approximate analytical solutions which demonstrates their applicability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable. A general expression for the nonlinear conductance is obtained by combining the Bethe ansatz exact solution with Landauer-Buttiker theory. In the Kondo regime, a closed form expression is given for the matrix conductance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of the Kondo resonance is possible for three or more leads. Specifically, for N leads, with each at a different chemical potential, there can be N-1 Kondo peaks in the conductance.
Resumo:
A flexible structure with surface-bonded piezoceramic patches is modelled using Timoshenko beam theory. Exact mode shapes and natural frequencies associated with the flexural motion are computed for various piezoceramic distributed actuator arrangements. The effects of patch placement and of shear on the modal characteristics are demonstrated using a cantilevered beam as an example. Perfect bonding of the piezoceramic to the beam substructure is assumed, and for the purposes of this paper only passive piezoceramic properties are considered. The modelling technique and results obtained in a closed form are intended to assist investigations into the modelling and control of active structures with surface-bonded piezoceramic actuators. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The prediction of watertable fluctuations in a coastal aquifer is important for coastal management. However, most previous approaches have based on the one-dimensional Boussinesq equation, neglecting variations in the coastline and beach slope. In this paper, a closed-form analytical solution for a two-dimensional unconfined coastal aquifer bounded by a rhythmic coastline is derived. In the new model, the effect of beach slope is also included, a feature that has not been considered in previous two-dimensional approximations. Three small parameters, the shallow water parameter (epsilon), the amplitude parameter (a) and coastline parameter (beta) are used in the perturbation approximation. The numerical results demonstrate the significant influence of both the coastline shape and beach slopes on tide-driven coastal groundwater fluctuations. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Rotating disk voltammetry is routinely used to study electrochemically driven enzyme catalysis because of the assumption that the method produces a steady-state system. This assumption is based on the sigmoidal shape of the voltammograms. We have introduced an electrochemical adaptation of the King-Altman method to simulate voltammograms in which the enzyme catalysis, within an immobilized enzyme layer, is steadystate. This method is readily adaptable to any mechanism and provides a readily programmable means of obtaining closed form analytical equations for a steady-state system. The steady-state simulations are compared to fully implicit finite difference (FIFD) simulations carried out without any steady-state assumptions. On the basis of our simulations, we conclude that, under typical experimental conditions, steady-state enzyme catalysis is unlikely to occur within electrode-immobilized enzyme layers and that typically sigmoidal rotating disk voltammograms merely reflect a mass transfer steady state as opposed to a true steady state of enzyme intermediates at each potential.
Resumo:
This letter presents an analytical model for evaluating the Bit Error Rate (BER) of a Direct Sequence Code Division Multiple Access (DS-CDMA) system, with M-ary orthogonal modulation and noncoherent detection, employing an array antenna operating in a Nakagami fading environment. An expression of the Signal to Interference plus Noise Ratio (SINR) at the output of the receiver is derived, which allows the BER to be evaluated using a closed form expression. The analytical model is validated by comparing the obtained results with simulation results.
Resumo:
Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.