180 resultados para Climate Responsive Design
em University of Queensland eSpace - Australia
Resumo:
Agricultural ecosystems and their associated business and government systems are diverse and varied. They range from farms, to input supply businesses, to marketing and government policy systems, among others. These systems are dynamic and responsive to fluctuations in climate. Skill in climate prediction offers considerable opportunities to managers via its potential to realise system improvements (i.e. increased food production and profit and/or reduced risks). Realising these opportunities, however, is not straightforward as the forecasting skill is imperfect and approaches to applying the existing skill to management issues have not been developed and tested extensively. While there has been much written about impacts of climate variability, there has been relatively little done in relation to applying knowledge of climate predictions to modify actions ahead of likely impacts. However, a considerable body of effort in various parts of the world is now being focused on this issue of applying climate predictions to improve agricultural systems. In this paper, we outline the basis for climate prediction, with emphasis on the El Nino-Southern Oscillation phenomenon, and catalogue experiences at field, national and global scales in applying climate predictions to agriculture. These diverse experiences are synthesised to derive general lessons about approaches to applying climate prediction in agriculture. The case studies have been selected to represent a diversity of agricultural systems and scales of operation. They also represent the on-going activities of some of the key research and development groups in this field around the world. The case studies include applications at field/farm scale to dryland cropping systems in Australia, Zimbabwe, and Argentina. This spectrum covers resource-rich and resource-poor farming with motivations ranging from profit to food security. At national and global scale we consider possible applications of climate prediction in commodity forecasting (wheat in Australia) and examine implications on global wheat trade and price associated with global consequences of climate prediction. In cataloguing these experiences we note some general lessons. Foremost is the value of an interdisciplinary systems approach in connecting disciplinary Knowledge in a manner most suited to decision-makers. This approach often includes scenario analysis based oil simulation with credible models as a key aspect of the learning process. Interaction among researchers, analysts and decision-makers is vital in the development of effective applications all of the players learn. Issues associated with balance between information demand and supply as well as appreciation of awareness limitations of decision-makers, analysts, and scientists are highlighted. It is argued that understanding and communicating decision risks is one of the keys to successful applications of climate prediction. We consider that advances of the future will be made by better connecting agricultural scientists and practitioners with the science of climate prediction. Professions involved in decision making must take a proactive role in the development of climate forecasts if the design and use of climate predictions are to reach their full potential. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Seasonal climate forecasting offers potential for improving management of crop production risks in the cropping systems of NE Australia. But how is this capability best connected to management practice? Over the past decade, we have pursued participative systems approaches involving simulation-aided discussion with advisers and decision-makers. This has led to the development of discussion support software as a key vehicle for facilitating infusion of forecasting capability into practice. In this paper, we set out the basis of our approach, its implementation and preliminary evaluation. We outline the development of the discussion support software Whopper Cropper, which was designed for, and in close consultation with, public and private advisers. Whopper Cropper consists of a database of simulation output and a graphical user interface to generate analyses of risks associated with crop management options. The charts produced provide conversation pieces for advisers to use with their farmer clients in relation to the significant decisions they face. An example application, detail of the software development process and an initial survey of user needs are presented. We suggest that discussion support software is about moving beyond traditional notions of supply-driven decision support systems. Discussion support software is largely demand-driven and can compliment participatory action research programs by providing cost-effective general delivery of simulation-aided discussions about relevant management actions. The critical role of farm management advisers and dialogue among key players is highlighted. We argue that the discussion support concept, as exemplified by the software tool Whopper Cropper and the group processes surrounding it, provides an effective means to infuse innovations, like seasonal climate forecasting, into farming practice. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We have designed an amphipathic peptide, AM1, that can self-assemble at the air-water interface to form an interfacial ensemble capable of switching between a mechanically strong cohesive film state and a mobile detergent state in response to changes in the solution conditions. The mechanical properties of the AM1 ensemble in the cohesive film state are qualitatively equivalent to the protein beta-LG, while in the mobile detergent state they are equivalent to the low molecular weight surfactant, SDS. In this work the foaming properties of AM1 are compared to those of beta-LG and SDS at the same weight concentration and it is found that AM1 adsorbs rapidly to the interface, initially forming a dense foam like that formed by SDS and superior to beta-LG. In addition, under solution conditions where interfacially adsorbed AM1 forms a cohesive film state the foam stability is high, comparable to beta-LG. However when the interfacially adsorbed AM1 forms a foam under detergent-state conditions, the foam stability is poor. We have achieved control of foam stability through the design of a peptide that exhibits stimuli-responsive changes in the extent of intermolecular interactions between peptide molecules adsorbed at the air water interface. These results illustrate the exciting potential of peptide surfactants to form a new class of stimuli-responsive foaming agents.
Resumo:
Sketch floor plan and diagrams.
Resumo:
Three-dimensional projection sketch showing roof forms and wall finishes.
Resumo:
In recent years, the design flows of many dams were re-evaluated, often resulting in discharges larger than the original design. In many cases, the occurrence of the revised flows could result in dam overtopping because of insufficient storage and spillway capacity. An experimental study was conducted herein to gain a better understanding of the flow properties in stepped chutes with slopes typical of embankment dams. The work was based upon a Froude similitude in large-size experimental facilities. A total of 10 configurations were tested including smooth steps, steps equipped with devices to enhance energy dissipation and rough steps. The present results yield a new design procedure. The design method includes some key issues not foreseen in prior studies : e.g., gradually varied flow, type of flow regime, flow resistance. It is believed that the outcomes are valid for a wide range of chute geometry and flow conditions typical of embankment chutes.
Resumo:
Philosophers expend considerable effort on the analysis of concepts, but the value of such work is not widely appreciated. This paper principally analyses some arguments, beliefs, and presuppositions about the nature of design and the relations between design and science common in the literature to illustrate this point, and to contribute to the foundations of design theory.
Resumo:
The discussion about relations between research and design has a number of strands, and presumably motivations. Putting aside the question whether or not design or “creative endeavour” should be counted as research, for reasons to do with institutional recognition or reward, the question remains how, if at all, is design research? This question is unlikely to have attracted much interest but for matters external to Architecture within the modern university. But Architecture as a discipline now needs to understand research much better than in the past when ‘research’ was whatever went on in building science, history or people/environment studies. In this paper, I begin with some common assumptions about design, considered in relation to research, and suggest how the former can constitute or be a mode of the latter. Central to this consideration is an understanding of research as the production of publicly available knowledge. The method is that of conceptual analysis which is much more fruitful than is usually appreciated. This work is part of a larger project in philosophy of design, in roughly the analytical tradition.