2 resultados para Clementine
em University of Queensland eSpace - Australia
Resumo:
In this Study we examine the spectral and morphometric properties of the four important lunar mare dome fields near Cauchy, Arago, Hortensius. and Milichius. We utilize Clementine UV vis mulfispectral data to examine the soil composition of the mare domes while employing telescopic CCD imagery to compute digital elevation maps in order to determine their morphometric properties, especially flank slope, height, and edifice Volume. After reviewing previous attempts to determine topographic data for lunar domes, we propose an image-based 3D reconstruction approach which is based on a combination of photoclinometry and shape from shading. Accordingly, we devise a classification scheme for lunar Marc domes which is based on a principal component analysis of the determined spectral and morphometric features. For the effusive mare domes of the examined fields we establish four Classes, two of which are further divided into two subclasses, respectively, where each class represents distinct combinations of spectral and morphometric dome properties. As a general trend, shallow and steep domes formed out of low-TiO2 basalts are observed in the Hortensius and Milichius dome fields, while the domes near Cauchy and Arago that consist of high-TiO2 basalts are all very shallow. The intrusive domes of our data set cover a wide continuous range of spectral and morphometric quantities, generally characterized by larger diameters and shallower flank slopes than effusive domes. A comparison to effusive and intrusive mare domes in other lunar regions, highland domes, and lunar cones has shown that the examined four mare dome fields display Such a richness in spectral properties and 3D dome shape that the established representation remains valid in a more global context. Furthermore, we estimate the physical parameters of dome formation for the examined domes based on a rheologic model. Each class of effusive domes defined in terms of spectral and morphometric properties is characterized by its specific range of values for lava viscosity, effusion rate, and duration of the effusion process. For our data set we report lava viscosities between about 10(2) and 10(8) Pas, effusion rates between 25 and 600 m(3) s(-1), and durations of the effusion process between three weeks and 18 years. Lava viscosity decreases with increasing R-415/R-750 spectral ratio and thus TiO2 content; however, the correlation is not strong, implying an important influence of further parameters like effusion temperature on lava viscosity.
Resumo:
Objective: An estimation of cut-off points for the diagnosis of diabetes mellitus (DM) based on individual risk factors. Methods: A subset of the 1991 Oman National Diabetes Survey is used, including all patients with a 2h post glucose load >= 200 mg/dl (278 subjects) and a control group of 286 subjects. All subjects previously diagnosed as diabetic and all subjects with missing data values were excluded. The data set was analyzed by use of the SPSS Clementine data mining system. Decision Tree Learners (C5 and CART) and a method for mining association rules (the GRI algorithm) are used. The fasting plasma glucose (FPG), age, sex, family history of diabetes and body mass index (BMI) are input risk factors (independent variables), while diabetes onset (the 2h post glucose load >= 200 mg/dl) is the output (dependent variable). All three techniques used were tested by use of crossvalidation (89.8%). Results: Rules produced for diabetes diagnosis are: A- GRI algorithm (1) FPG>=108.9 mg/dl, (2) FPG>=107.1 and age>39.5 years. B- CART decision trees: FPG >=110.7 mg/dl. C- The C5 decision tree learner: (1) FPG>=95.5 and 54, (2) FPG>=106 and 25.2 kg/m2. (3) FPG>=106 and =133 mg/dl. The three techniques produced rules which cover a significant number of cases (82%), with confidence between 74 and 100%. Conclusion: Our approach supports the suggestion that the present cut-off value of fasting plasma glucose (126 mg/dl) for the diagnosis of diabetes mellitus needs revision, and the individual risk factors such as age and BMI should be considered in defining the new cut-off value.