60 resultados para Classical orthogonal polynomials of a discrete variable

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The known permutation behaviour of the Dickson polynomials of the second kind in characteristic 3 is expanded and simplified. (C) 2002 Elsevier Science (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We revisit the one-unit gradient ICA algorithm derived from the kurtosis function. By carefully studying properties of the stationary points of the discrete-time one-unit gradient ICA algorithm, with suitable condition on the learning rate, convergence can be proved. The condition on the learning rate helps alleviate the guesswork that accompanies the problem of choosing suitable learning rate in practical computation. These results may be useful to extract independent source signals on-line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of the free vibration of plates with internal discontinuities due to central cut-outs. A numerical formulation for a basic L-shaped element which is divided into appropriate sub-domains that are dependent upon the location of the cut-out is used as the basic building element. Trial functions formed to satisfy certain boundary conditions are employed to define the transverse deflection of each sub-domain. Mathematical treatments in terms of the continuities in displacement, slope, moment, and higher derivatives between the adjacent sub-domains are enforced at the interconnecting edges. The energy functional results, from the proper assembly of the coupled strain and kinetic energy contributions of each sub-domain, are minimized via the Ritz procedure to extract the vibration frequencies and. mode shapes of the plates. The procedures are demonstrated by considering plates with central cut-outs that are subjected to two types of boundary conditions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the method of quantum trajectories we show that a known pure state can be optimally monitored through time when subject to a sequence of discrete measurements. By modifying the way that we extract information from the measurement apparatus we can minimize the average algorithmic information of the measurement record, without changing the unconditional evolution of the measured system. We define an optimal measurement scheme as one which has the lowest average algorithmic information allowed. We also show how it is possible to extract information about system operator averages from the measurement records and their probabilities. The optimal measurement scheme, in the limit of weak coupling, determines the statistics of the variance of the measured variable directly. We discuss the relevance of such measurements for recent experiments in quantum optics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The step size determines the accuracy of a discrete element simulation. The position and velocity updating calculation uses a pre-calculated table and hence the control of step size can not use the integration formulas for step size control. A step size control scheme for use with the table driven velocity and position calculation uses the difference between the calculation result from one big step and that from two small steps. This variable time step size method chooses the suitable time step size for each particle at each step automatically according to the conditions. Simulation using fixed time step method is compared with that of using variable time step method. The difference in computation time for the same accuracy using a variable step size (compared to the fixed step) depends on the particular problem. For a simple test case the times are roughly similar. However, the variable step size gives the required accuracy on the first run. A fixed step size may require several runs to check the simulation accuracy or a conservative step size that results in longer run times. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-node tandem Jackson network serves as a convenient reference model for the analysis and testing of different methodologies and techniques in rare event simulation. In this paper we consider a new approach to efficiently estimate the probability that the content of the second buffer exceeds some high level L before it becomes empty, starting from a given state. The approach is based on a Markov additive process representation of the buffer processes, leading to an exponential change of measure to be used in an importance sampling procedure. Unlike changes of measures proposed and studied in recent literature, the one derived here is a function of the content of the first buffer. We prove that when the first buffer is finite, this method yields asymptotically efficient simulation for any set of arrival and service rates. In fact, the relative error is bounded independent of the level L; a new result which is not established for any other known method. When the first buffer is infinite, we propose a natural extension of the exponential change of measure for the finite buffer case. In this case, the relative error is shown to be bounded (independent of L) only when the second server is the bottleneck; a result which is known to hold for some other methods derived through large deviations analysis. When the first server is the bottleneck, experimental results using our method seem to suggest that the relative error is bounded linearly in L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give conditions on f involving pairs of discrete lower and discrete upper solutions which lead to the existence of at least three solutions of the discrete two-point boundary value problem yk+1 - 2yk + yk-1 + f (k, yk, vk) = 0, for k = 1,..., n - 1, y0 = 0 = yn,, where f is continuous and vk = yk - yk-1, for k = 1,..., n. In the special case f (k, t, p) = f (t) greater than or equal to 0, we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and Peterson and are in the spirit of our results for the continuous analogue. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an efficient and robust method for calculating state-to-state reaction probabilities utilising the Lanczos algorithm for a real symmetric Hamiltonian. The method recasts the time-independent Artificial Boundary Inhomogeneity technique recently introduced by Jang and Light (J. Chem. Phys. 102 (1995) 3262) into a tridiagonal (Lanczos) representation. The calculation proceeds at the cost of a single Lanczos propagation for each boundary inhomogeneity function and yields all state-to-state probabilities (elastic, inelastic and reactive) over an arbitrary energy range. The method is applied to the collinear H + H-2 reaction and the results demonstrate it is accurate and efficient in comparison with previous calculations. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.