5 resultados para Circulation of seeds and propagules
em University of Queensland eSpace - Australia
Resumo:
Annonaceae and Myristicaceae, the two largest families of Magnoliales, are pantropical groups of uncertain geographic history. The most recent morphological and molecular phylogenetic analyses identify the Asian-American genus Anaxagorea as sister to all other Annonaceae and the ambavioids, consisting of small genera endemic to South America, Africa, Madagascar, and Asia, as a second branch. However, most genera form a large clade in which the basal lines are African, and South American and Asian taxa are more deeply nested. Although it has been suggested that Anaxagorea was an ancient Laurasian line, present data indicate that this genus is basically South American. These considerations may mean that the family as a whole began its radiation in Africa and South America in the Late Cretaceous, when the South Atlantic was narrower, and several lines dispersed from Africa-Madagascar into Laurasia as the Tethys closed in the Tertiary. This scenario is consistent with the occurrence of annonaceous seeds in the latest Cretaceous of Nigeria and the Eocene of England and with molecular dating of the family. Based on distribution of putatively primitive taxa in Madagascar and derived taxa in Asia, it has been suggested that Myristicaceae had a similar history. Phylogenetic analyses of Myristicaceae, using morphology and several plastid regions, confirm that the ancestral area was Africa-Madagascar and that Asian taxa are derived. However, Myristicaceae as a whole show strikingly lower molecular divergence than Annonaceae, indicating either a much younger age or a marked slowdown in molecular evolution. The fact that the oldest diagnostic fossils of Myristicaceae are Miocene seeds might be taken as evidence that Myristicaceae are much younger than Annonaceae, but this is implausible in requiring transoceanic dispersal of their large, animal-dispersed seeds.
Resumo:
Human urotensin-II (hU-II) is processed from its prohormone (ProhU-II) at putative cleavage sites for furin and serine proteases such as trypsin. Although proteolysis is required for biological activity, the endogenous urotensin-converting enzyme (UCE) has not been investigated. The aim of this study was to investigate UCE activity in cultured human cells and in blood, comparing activity with that of furin and trypsin. In a cell-free system, hU-II was detected by high-performance liquid chromatography-mass spectrometry after coincubating 10 muM carboxyl terminal fragment (CTF)-ProhU-II with recombinant furin (2 U/ml, 3 h, 37degreesC) at pH 7.0 and pH 8.5, but not at pH 5.0, or when the incubating medium was depleted of Ca2+ ions and supplemented with 2 mM EDTA at pH 7.0. hU-II was readily detected in the superperfusate of permeabilized epicardial mesothelial cells incubated with CTF-ProhU-II (3 h, 37degreesC), but it was only weakly detected in the superperfusate of intact cells. Conversion of CTF-ProhU-II to hU-II was attenuated in permeabilized cells using conditions found to inhibit furin activity. In a cell-free system, trypsin (0.05 mg/ml) cleaved CTF-ProhU-II to hU-II, and this was inhibited with 35 muM aprotinin. hU-II was detected in blood samples incubated with CTF-ProhU-II (3 h, 37degreesC), and this was also inhibited with aprotinin. The findings revealed an intracellular UCE in human epicardial mesothelial cells with furin-like activity. Aprotinin-sensitive UCE activity was detected in blood, suggesting that an endogenous serine protease such as trypsin may also contribute to proteolysis of hU-II prohormone, if the prohormone is secreted into the circulation.
Resumo:
Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of platelet-derived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P=0.001), followed by a significant increase to the end of angioplasty (P=0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin-antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.
Resumo:
The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio-arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio-arterial pathway across the respiratory lamellae; an arterio-arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.