3 resultados para Ciliata indeterminata
em University of Queensland eSpace - Australia
Resumo:
The status of all of the putative member genera of the subfamily Aephnidiogeninae is reconsidered, based mainly on the morphology of the terminal genitalia, Aephnidiogenes Nicoll, 1915 is the only genus retained in the Aaephnidiogeninae. Aephnidiogenes major Yamaguti, 1934 from Diagramma labiosum from the southern Great Barrier Reef is redescribed with particular reference to the terminal genitalia, and is shown to lack a true cirrussac, a condition considered to be diagnostic of the Aephnidiogeninae. Holorchis Stossich, 1901 is placed in the subfamily Lepidapedinae. Holorchis pycnoporus Stossich, 1901 from Pagellus acarne from off Spanish Sahara and from Diplodus vulgaris from off Italy and H. legendrei Dollfus, 1946 from Sparodon durbanensis and D. sargus from off eastern Cape Province, South Africa and from Pagellus erythrinus from the Adriatic Sea and Italy are studied and illustrated. The terminal genitalia of H. pycnoporus are found to be enigmatic, but those of H. legendrei are found to fit clearly into the 'Lepidapedon-like' pattern. A new genus Austroholorchis is erected in the Lepidapedinae, with A. sprenti (Gibson, 1987) n. comb. as the type-species. Its diagnostic features are its ani, infundibuliform oral sucker and the position of the ovary at about mid-level of the uterus. A. sprenti is illustrated, its hosts in Queensland waters being Sillago maculata, S, analis and S. ciliata. A, levis n. sp. is described from Sillago bassensis from south-western Western Australia. The genus Pseudaephnidiogenes Yamaguti, 1971 is placed in the Lepidapedinae. P. rhabdosargi (Prudhoe, 1956) from Rhabdosargus sarba from off Natal, South Africa is illustrated and the terminal genitalia of P. rhabdosargi from R. sarba and from R. holubi from off eastern Cape Province and Pseudaephnidiogenes vossi Bray, 1985 from Caffrogobius nudiceps from off eastern Cape Province, South Africa are illustrated. The genus Pseudoholorchis Yamaguti, 1958 is placed in the subfamily Lepocreadiinae. The terminal genitalia of P. pulcher (Manter, 1954) from Latridopsis ciliaris from New Zealand are illustrated, The genus Neolepocreadium Thomas, 1960 is placed in the Lepocreadiidae.
Resumo:
The genus Intusatrium Durio & Manter, 1968 is redefined based on a re-examination of paratypes of the type-species, I. robustum Durio & Manter, 1968, and is considered monotypic with characteristic terminal genitalia: internal seminal vesicle elongate tubular, with rather thick wall, divided by slight change in wall thickness into longer proximal and shorter distal region; pars prostatica subcylindrical; ejaculatory duct relatively short, with wrinkled/wall. The genus Postlepidapedon Zdzitowiecki, 1993 is redefined and Intusatrium secundum Durio & Manter, 1968 is attributed to it as a new combination. Postlepidapedon secundum n. comb. is redescribed from a paratype and new material from Choerodon graphicus. P. spissum n. sp. from Choerodon venustus, C. cyanodus, C. fasciatus and C. schoenleinii is recognised on the basis of its thick-walled internal seminal vesicle. I! uberis n. sp. from Choerodon schoenleinii and C. venustus is distinguished by the shape and contents of the cirrus-sac with narrow, convoluted internal seminal vesicle, large vesicular pars prostatica and short, muscular ejaculatory duct. A new genus, Gibsonivermis, erected for Intusatrium berryi Gibson, 1987, is characterised by the elongate narrow cirrus-sac and a uroproct. G. berryi n. comb. is redescribed from Sillago ciliata, S. maculata and Sillago sp.
Resumo:
Mature euspermatozoan ultrastructure is described for seven species of the rissooidean family Baicaliidae (endemic to Lake Baikal, Russia)-Liobaicalia stiedae, Teratobaikalia ciliata, T. macrostoma, Baicalia carinata, Pseudobaikalia pulla, Maackia bythiniopsis, M. variesculpta, and M. herderiana. For comparison with these species and previously investigated Rissooidea, two species of the Lake Baikal endemic genus Benedictia (B. cf. fragilis and B. baicalensis; Hydrobiidae: Benedictiinae of some authors, Benedictiidae of other authors) in addition to Lithoglyphus naticoides (Hydrobiidae: Lithoglyphinae) and Bythinella austriaca (Hydrobiidae: Bythinellinae) were also investigated. Paraspermatozoa were not observed in any of the species examined, supporting the view that these cells are probably absent in the Rissooidea. In general, the euspermatozoa of all species examined resemble those of many other caenogastropods (basally invaginated acrosomal vesicle, mid-piece with 7-13 helical mitochondria, an annulus, glycogen piece with nine peri-axonemal tracts of granules). However, the presence of a completely flattened acrosomal vesicle and a specialized peri-axonemal membranous sheath (a scroll-like arrangement of 4-6 double membranes) at the termination of the mid-piece, clearly indicates a close relationship between the Baicaliidae and other rissooidean families possessing these features (Bithyniidae, Hydrobiidae, Pyrgulidae, and Stenothyridae). Euspermatozoa of Benedictia, Lithoglyphus, Bythinella, and Pyrgula all have a solid nucleus, which exhibits a short, posterior invagination (housing the centriolar complex and proximal portion of the axoneme). Among the Rissooidea, this form of nucleus is known to occur in the Bithyniidae, Hydrobiidae, Truncatellidae, Pyrgulidae, Iravadiidae, Pomatiopsidae, and Stenothyridae. In contrast, the euspermatozoa of the Baicaliidae all have a long, tubular nucleus, housing not only the centriolar derivative, but also a substantial portion of the axoneme. Among the Rissooidea, a tubular nuclear morphology has previously been seen in the Rissoidae, which could support the view, based on anatomical grounds, that the Baicaliidae may have arisen from a different ancestral source than the Hydrobiidae. However, the two styles of nuclear morphology (short, solid versus long, tubular) occur widely within the Caenogastropoda, and sometimes both within a single family, thereby reducing the phylogenetic importance of nuclear differences within the Rissooidea. More significantly, the occurrence of the highly unusual membranous sheath within the mid-piece region in the Baicaliidae appears to tie this family firmly to the Bithyniidae + Hydrobiidae + Stenothyridae + Pyrgulidae assemblage. Eusperm features of Benedictia spp. strongly resemble those of hydrobiids and bithyniids, and neither support recognition of a distinct family Benedictiidae (at best this is a subfamily of Hydrobiidae) nor any close connection with the hydrobiid subfamily Lithoglyphinae.