23 resultados para Chinese information processing
em University of Queensland eSpace - Australia
Resumo:
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.
Resumo:
Recognising the laterality of a pictured hand involves making an initial decision and confirming that choice by mentally moving one's own hand to match the picture. This depends on an intact body schema. Because patients with complex regional pain syndrome type 1 (CRPS1) take longer to recognise a hand's laterality when it corresponds to their affected hand, it has been proposed that nociceptive input disrupts the body schema. However, chronic pain is associated with physiological and psychosocial complexities that may also explain the results. In three studies, we investigated whether the effect is simply due to nociceptive input. Study one evaluated the temporal and perceptual characteristics of acute hand pain elicited by intramuscular injection of hypertonic saline into the thenar eminence. In studies two and three, subjects performed a hand laterality recognition task before, during, and after acute experimental hand pain, and experimental elbow pain, respectively. During hand pain and during elbow pain, when the laterality of the pictured hand corresponded to the painful side, there was no effect on response time (RT). That suggests that nociceptive input alone is not sufficient to disrupt the working body schema. Conversely to patients with CRPS1, when the laterality of the pictured hand corresponded to the non-painful hand, RT increased similar to 380 ms (95% confidence interval 190 ms-590 ms). The results highlight the differences between acute and chronic pain and may reflect a bias in information processing in acute pain toward the affected part.
Resumo:
Photonic quantum-information processing schemes, such as linear optics quantum computing, and other experiments relying on single-photon interference, inherently require complete photon indistinguishability to enable the desired photonic interactions to take place. Mode-mismatch is the dominant cause of photon distinguishability in optical circuits. Here we study the effects of photon wave-packet shape on tolerance against the effects of mode mismatch in linear optical circuits, and show that Gaussian distributed photons with large bandwidth are optimal. The result is general and holds for arbitrary linear optical circuits, including ones which allow for postselection and classical feed forward. Our findings indicate that some single photon sources, frequently cited for their potential application to quantum-information processing, may in fact be suboptimal for such applications.
Resumo:
We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.
Resumo:
Caffeine is known to increase arousal, attention, and information processing-all factors implicated in facilitating persuasion. In a standard attitude-change paradigm, participants consumed an orange-juice drink that either contained caffeine (3.5 mg/kg body weight) or did not (placebo) prior to reading a counterattitudinal communication (anti-voluntary euthanasia). Participants then completed a thought-listing task and a number of attitude scales. The first experiment showed that those who consumed caffeine showed greater agreement with the communication (direct attitude: voluntary euthanasia) and on an issue related to, but not contained in, the communication (indirect attitude: abortion). The order in which direct and indirect attitudes were measured did not affect the results. A second experiment manipulated the quality of the arguments in the message (strong vs. weak) to determine whether systematic processing had occurred. There was evidence that systematic processing occurred in both drink conditions, but was greater for those who had consumed caffeine. In both experiments, the amount of message-congruent thinking mediated persuasion. These results show that caffeine can increase the extent to which people systematically process and are influenced by a persuasive communication.
Resumo:
Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.
Resumo:
Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.
Resumo:
In many advanced applications, data are described by multiple high-dimensional features. Moreover, different queries may weight these features differently; some may not even specify all the features. In this paper, we propose our solution to support efficient query processing in these applications. We devise a novel representation that compactly captures f features into two components: The first component is a 2D vector that reflects a distance range ( minimum and maximum values) of the f features with respect to a reference point ( the center of the space) in a metric space and the second component is a bit signature, with two bits per dimension, obtained by analyzing each feature's descending energy histogram. This representation enables two levels of filtering: The first component prunes away points that do not share similar distance ranges, while the bit signature filters away points based on the dimensions of the relevant features. Moreover, the representation facilitates the use of a single index structure to further speed up processing. We employ the classical B+-tree for this purpose. We also propose a KNN search algorithm that exploits the access orders of critical dimensions of highly selective features and partial distances to prune the search space more effectively. Our extensive experiments on both real-life and synthetic data sets show that the proposed solution offers significant performance advantages over sequential scan and retrieval methods using single and multiple VA-files.
Resumo:
A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.