125 resultados para Chemical solution deposition method
em University of Queensland eSpace - Australia
Resumo:
Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this article, we investigate the parameters used in the MOCVD growth of GaAsN epilayers on GaAs substrates and some of their microstructures and optical properties. The N incorporation was found to mainly depend on the growth temperature and the fractional 1,1-dimethylhydrazine molar flow. A thin highly strained interface layer was observed between GaAsN and GaAs, which, contrary to previously published results, was not N enriched. The low-temperature (10 K) photoluminescence spectra were composed of several emissions that we attribute to a combination of interband transition and transitions involving localized defect states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Highly lattice mismatched (7.8%) GaAs/GaSb nanowire heterostructures were grown by metal-organic chemical vapor deposition and their detailed structural characteristics were determined by electron microscopy. The facts that (i) no defects have been found in GaSb and its interfaces with GaAs and (ii) the lattice mismatch between GaSb/GaAs was fully relaxed suggest that the growth of GaSb nanowires is purely governed by the thermodynamics. The authors believe that the low growth rate of GaSb nanowires leads to the equilibrium growth. (c) 2006 American Institute of Physics.
Resumo:
TiO2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve the recovery rate of TiO2 photocatalysts, which in most cases are in fine powder form, the chemical vapor deposition (CVD) method was used to load TiO2 onto a bigger particle support, silica gel. The amount of titania coating was found to depend strongly on the synthesis parameters of carrier gas flow rate and coating time. XPS and nitrogen ads/desorption results showed that most of the TiO2 particles generated from CVD were distributed on the external surface of the support and the coating was stable. The photocatalytic activities of TiO2/silica gel with different amounts of titania were evaluated for the oxidation of phenol aqueous solution and compared with that of Degussa P25. The optimum titania loading rate was found around 6 wt % of the TiO2 bulk concentration. Although the activity of the best TiO2/silica gel sample was still lower than that of P25, the synthesized TiO2/silica gel catalyst can be easily separated from the treated water and was found to maintain its TiO2 content and catalytic activity.
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.
Resumo:
The first success in the preparation of rare earth hydroxycarbonate thin films has been achieved. Cerium hydroxycarbonate films were prepared by a hydrothermal deposition method, the sample of a single orthorhombic phase was deposited at a lower temperature while those of orthorhombic and hexagonal phases were obtained at higher temperatures. The crystals in the films could be ellipsoidal, prismatic, or rhombic, depending on the deposition conditions applied. The thin films could be candidates for developing novel optical materials and for advanced ceramics processing. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A lithographic method was used to produce polycrystalline diamond films having highly defined surface geometry, showing an array of diamond tips for possible application as a field emitter device. The films grown in this study used microwave plasma assisted chemical vapour deposition (MACVD) on a silicon substrate; the substrate was then dissolved away to reveal the surface features on the diamond film. It is possible to align the crystallite direction and affect the electron emission properties using a voltage bias to enhance the nucleation process and influence the nuclei to a preferred orientation. This study focuses on the identification of the distribution of crystal directions in the film, using electron backscattering diffraction (EBSD) to identify the crystallographic character of the film surface. EBSD allows direct examination of the individual diamond grains, grains boundaries and the crystal orientation of each individual crystallite. The EBSD maps of the bottom (nucleation side) of the films, following which a layer of film is ion-milled away and the mapping process repeated. The method demonstrates experimentally that oriented nucleation occurs and the thin sections allow the crystal texture to be reconstructed in 3-D. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Adsorption of supercritical fluids is increasingly carried out to determine the micropore size distribution. This is largely motivated by the advances in the use of supercritical adsorption in high energy applications, such as hydrogen and methane storage in porous media. Experimental data are reported as mass excess versus pressure, and when these data are matched against the theoretical mass excess, significant errors could occur if the void volume used in the calculation of the experimental mass excess is incorrectly determined [Malbrunot, P.; Vidal, D.; Vermesse, J.; Chahine, R.; Bose, T. K. Langmuir 1997, 13, 539]. 1 The incorrect value for the void volume leads to a wrong description of the maximum in the plot of mass excess versus pressure as well as the part of the isotherm over the pressure region where the isotherm is decreasing. Because of this uncertainty in the maximum and the decreasing part of the isotherm, we propose a new method in which the problems associated with this are completely avoided. Our method involves only the relationship between the amount that is introduced into the adsorption cell and the equilibrium pressure. This information of direct experimental data has two distinct advantages. The first is that the data is the raw data without any manipulation (i.e., involving further calculations), and the second one is that this relationship always monotonically increases with pressure. We will illustrate this new method with the adsorption data of methane in a commercial sample of activated carbon.
Resumo:
The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.
Resumo:
A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by