4 resultados para Chemical screening
em University of Queensland eSpace - Australia
Resumo:
An LC/MS analysis with diagnostic screening for the detection of peptides with posttranslational modifications revealed the presence of novel sulfated peptides within the -conotoxin molecular mass range in Conus anemone crude venom. A functional assay of the extract showed activity at several neuronal nicotinic acetylcholine receptors (nAChRs). Three sulfated alpha-conotoxins (AnIA, AnIB, and AnIC) were identified by LC/MS and assay-directed fractionation and sequenced after purification. The most active of these, alpha-AnIB, was further characterized and used to investigate the influence of posttranslational modifications on affinity. Synthetic AnIB exhibited subnanomolar potency at the rat alpha3/beta2 nAChR (IC50 0.3 nM) and was 200-fold less active on the rat alpha7 nAChR (IC50 76 nM). The unsulfated peptide [Tyr(16)]AnIB showed a 2-fold and 10-fold decrease in activities at alpha3beta2 (IC50 0.6 nM) and alpha7(IC50 836 nM) nAChR, respectively. Likewise, removal of the C-terminal amide had a greater influence on potency at the alpha7 (IC50 367 nM) than at the alpha3beta2 nAChR (IC50 0.5 nM). Stepwise removal of two N-terminal glycine residues revealed that these residues affect the binding kinetics of the peptide. Comparison with similar 4/7-alpha-conotoxin sequences suggests that residue 11 (alanine or glycine) and residue 14 (glutamine) constitute important determinants for alpha3beta2 selectivity, whereas the C-terminal amidation and sulfation at tyrosine-16 favor alpha7 affinity.
Resumo:
Cyclotides are a recently discovered class of proteins that have a characteristic head-to-tail cyclized backbone stabilized by a knotted arrangement of three disulfide bonds. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. Cyclotides have a range of bio-activities, including uterotonic, anti-HIV, anti-bacterial and cytotoxic activity but their insecticidal properties suggest that their natural physiological role is in plant defense. They are genetically encoded as linear precursors and subsequently processed to produce mature cyclic peptides but the mechanism by which this occurs remains unknown. Currently most cyclotides are obtained via direct extraction from plants in the Rubiaceae and Violaceae families. To facilitate the screening of cyclotides for structure-activity studies and to exploit them in drug design or agricultural applications a convenient route for the synthesis of cyclotides is vital. In this review the current chemical, recombinant and biosynthetic routes to the production of cyclotides are discussed.