5 resultados para Chemical reactors

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical engineers are turning to multiscale modelling to extend traditional modelling approaches into new application areas and to achieve higher levels of detail and accuracy. There is, however, little advice available on the best strategy to use in constructing a multiscale model. This paper presents a starting point for the systematic analysis of multiscale models by defining several integrating frameworks for linking models at different scales. It briefly explores how the nature of the information flow between the models at the different scales is influenced by the choice of framework, and presents some restrictions on model-framework compatibility. The concepts are illustrated with reference to the modelling of a catalytic packed bed reactor. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a novel molecular sieve silica (MSS) membrane packed bed reactor (PBR) using a Cu/ZnO/Al2O3 catalyst was applied to the low-temperature water gas shift reaction (WGS). Best permeation results were H-2 permeances of 1.5 x 10(-6) mol(.)s(-1) m(-2) Pa-1, H-2/CO2 selectivities of 8 and H-2/N-2 selectivities of 18. It was shown that an operation with a sweep gas flow of 80 cm 3 min(-1), a feed flow rate of 50 cm(3) min(-1) and a H2O/CO molar ratio of one at 280 degreesC reached a 99% CO conversion. This is well above the thermodynamic equilibrium and achievable PBR conversion. Hydrophilic membranes underwent pore widening during the reaction while hydrophobic membranes indicated no such behaviour and also showed increased H-2 permeation with temperature, a characteristic of activated transport. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vermicompost filtration is a new on-site waste treatment system. Consequently, little is known about the filter medium properties. The aim of this preliminary study was to quantify physical and compositional properties of vermicompost filter beds that had been used to treat domestic solid organic waste and wastewater. This paper presents the trials performed on pilot-scale reactors filled with vermicompost from a full-scale vermicompost filtration system. Household solid organic waste and raw wastewater at the rate of 130 L/m(2)/d was applied to the reactor bed surface over a four-month period. It was found that fresh casts laid on the bed surface had a BOD of 1290 mg/g VS while casts buried to a depth of 10 cm had a BOD of 605 mg/g VS. Below this depth there was little further biodegradation of earthworm casts despite cast ages of up to five years. Solid material in the reactor accounted for only 7-10% of the reactor volume. The total voidage comprised of large free-draining pores, which accounted for 15-20% of the reactor volume and 60-70% micropores, able to hold up water against gravity. It was shown that water could flow through the medium micropores and macropores following a wastewater application. The wastewater flow characteristics were modeled by a two-region model based on the Richards Equation, an equation used to describe porous spatially heterogeneous materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.