3 resultados para Chemical pulp
em University of Queensland eSpace - Australia
Resumo:
A new device has been developed to directly measure the bubble loading of particle-bubble aggregates in industrial flotation machines, both mechanical flotation cells as well as flotation column cells. The bubble loading of aggregates allows for in-depth analysis of the operating performance of a flotation machine in terms of both pulp/collection zone and froth zone performance. This paper presents the methodology along with an example showing the excellent reproducibility of the device and an analysis of different operating conditions of the device itself. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
A technique for determining the recovery of attached particles across the froth phase in flotation that relies on measuring the rate at which bubble-particle aggregates enter the froth is used to investigate the selectivity of attached particles across the froth phase. Combining these measurements with those of other techniques for determining the froth recovery of attached particles provides an insight into the different sub-processes of particle rejection in the froth phase. The results of experiments conducted in a 3 m(3) Outokumpu tank cell show that the detachment of particles from aggregates in the froth phase occurs largely at the pulp-froth interface. In particular it is shown that the pulp-froth interface selectively detaches particles from aggregates according to their physical attributes. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The difficulties associated with slurry transportation in autogenous (ag) and semi-autogenous (sag) grinding mills have become more apparent in recent years with the increasing trend to build larger diameter mills for grinding high tonnages. This is particularly noticeable when ag/sag mills are run in closed circuit with classifiers such as fine screens/cyclones. Extensive test work carried out on slurry removal mechanism in grate discharge mills (ag/sag) has shown that the conventional pulp lifters (radial and curved) have inherent drawbacks. They allow short-circuiting of the slurry from pulp lifters into the grinding chamber leading to slurry pool formation. Slurry pool absorbs part of the impact thus inhibiting the grinding process. Twin Chamber Pulp Lifter (TCPL) - an efficient design of pulp lifter developed by the authors overcomes the inherent drawbacks of the conventional pulp lifters. Extensive testing in both laboratory and pilot scale mills has shown that the TCPL completely blocks the flow-back process, thus allowing the mill to operate close to their design flow capacity. The TCPL performance is also found to be independent of variations in charge volume and grate design, whereas they significantly affect the performance of conventional pulp lifters (radial and curved). (c) 2006 Elsevier B.V. All rights reserved.