9 resultados para Charlie transposon
em University of Queensland eSpace - Australia
Resumo:
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and T-C transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike T-C transposons in mutator strains of C elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control T-C activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Despite the presence of over 3 million transposons separated on average by similar to 500 bp, the human and mouse genomes each contain almost 1000 transposon-free regions (TFRs) over 10 kb in length. The majority of human TFRs correlate with orthologous TFRs in the mouse, despite the fact that most transposons are lineage specific. Many human TFRs also overlap with orthologous TFRs in the marsupial opossum, indicating that these regions have remained refractory to transposon insertion for long evolutionary periods. Over 90% of the bases covered by TFRs are noncoding, much of which is not highly conserved. Most TFRs are not associated with unusual nucleotide composition, but are significantly associated with genes encoding developmental regulators, suggesting that they represent extended regions of regulatory information that are largely unable to tolerate insertions, a conclusion difficult to reconcile with current conceptions of gene regulation.
Resumo:
A mini-Tn10:lacZ: kan was inserted into a wild-type strain of Acetobacter xylinus by random transposon mutagenesis, generating a lactose-utilising and cellulose-producing mutant strain designated ITz3. Antibiotic selection plate assays and Southern hybridisation revealed that the lacZ gene was inserted once into the chromosome of strain ITz3 and was stably maintained in non-selective medium after more than 60 generations. The modified strain had, on the average, a 28-fold increase in cellulose production and a 160-fold increase in beta-galactosidase activity when grown in lactose medium. beta-Galactosidase activity is present in either lactose or sucrose medium indicating that the gene is constitutively expressed. Cellulose and beta-galactosidase production by the modified strain was also evaluated in pure and enriched whey substrates. Utilisation of lactose in whey substrate by ITz3 reached 17 g l(-1) after 4 days incubation. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.
Resumo:
The clinical use of potent, well-tolerated, broad-spectrum antibiotics has been paralleled by the development of resistance in bacteria, and the prevalence of highly resistant bacteria in some intensive care units is despairingly commonplace. The intensive care community faces the realistic prospect of untreatable nosocomial infections and should be searching for new approaches to diagnose and manage resistant bacteria. In this review, we discuss some of the relevant underlying biology, with a particular focus on genetic transfer vehicles and the relationship of selection pressure to their movements. It is an attempt to demystify the relevant language and concepts for the anaesthetist and intensivist, to explain some of the reasons for the emergence of resistance in bacteria, and to provide a contextual basis for discussion of management approaches such as selective decontamination and antibiotic cycling.
Resumo:
Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.