15 resultados para Chaotic attractor
em University of Queensland eSpace - Australia
Resumo:
The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.
Resumo:
The occurrence of chaotic instabilities is investigated in the swing motion of a dragline bucket during operation cycles. A dragline is a large, powerful, rotating multibody system utilised in the mining industry for removal of overburden. A simplified representative model of the dragline is developed in the form of a fundamental non-linear rotating multibody system with energy dissipation. An analytical predictive criterion for the onset of chaotic instability is then obtained in terms of critical system parameters using Melnikov's method. The model is shown to exhibit chaotic instability due to a harmonic slew torque for a range of amplitudes and frequencies. These chaotic instabilities could introduce irregularities into the motion of the dragline system, rendering the system difficult to control by the operator and/or would have undesirable effects on dragline productivity and fatigue lifetime. The sufficient analytical criterion for the onset of chaotic instability is shown to be a useful predictor of the phenomenon under steady and unsteady slewing conditions via comparisons with numerical results. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.
Resumo:
Boolean models of genetic regulatory networks (GRNs) have been shown to exhibit many of the characteristic dynamics of real GRNs, with gene expression patterns settling to point attractors or limit cycles, or displaying chaotic behaviour, depending upon the connectivity of the network and the relative proportions of excitatory and inhibitory interactions. This range of behaviours is only apparent, however, when the nodes of the GRN are updated synchronously, a biologically implausible state of affairs. In this paper we demonstrate that evolution can produce GRNs with interesting dynamics under an asynchronous update scheme. We use an Artificial Genome to generate networks which exhibit limit cycle dynamics when updated synchronously, but collapse to a point attractor when updated asynchronously. Using a hill climbing algorithm the networks are then evolved using a fitness function which rewards patterns of gene expression which revisit as many previously seen states as possible. The final networks exhibit “fuzzy limit cycle” dynamics when updated asynchronously.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.
Resumo:
We show that deterministic quantum computing with a single bit can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where N is the dimension of the Hilbert space of the system under study. This is a square-root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.
Resumo:
The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.
Resumo:
An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The work presents a new approach to the problem of simultaneous localization and mapping - SLAM - inspired by computational models of the hippocampus of rodents. The rodent hippocampus has been extensively studied with respect to navigation tasks, and displays many of the properties of a desirable SLAM solution. RatSLAM is an implementation of a hippocampal model that can perform SLAM in real time on a real robot. It uses a competitive attractor network to integrate odometric information with landmark sensing to form a consistent representation of the environment. Experimental results show that RatSLAM can operate with ambiguous landmark information and recover from both minor and major path integration errors.
Resumo:
Computer-based, socio-technical systems projects are frequently failures. In particular, computer-based information systems often fail to live up to their promise. Part of the problem lies in the uncertainty of the effect of combining the subsystems that comprise the complete system; i.e. the system's emergent behaviour cannot be predicted from a knowledge of the subsystems. This paper suggests uncertainty management is a fundamental unifying concept in analysis and design of complex systems and goes on to indicate that this is due to the co-evolutionary nature of the requirements and implementation of socio-technical systems. The paper shows a model of the propagation of a system change that indicates that the introduction of two or more changes over time can cause chaotic emergent behaviour.
Resumo:
MICE (meetings, incentives, conventions, and exhibitions), has generated high foreign exchange revenue for the economy worldwide. In Thailand, MICE tourists are recognized as ‘quality’ visitors, mainly because of their high-spending potential. Having said that, Thailand’s MICE sector has been influenced by a number of crises following September 11, 2001. Consequently, professionals in the MICE sector must be prepared to deal with such complex phenomena of crisis that might happen in the future. While a number of researches have examined the complexity of crises in the tourism context, there has been little focus on such issues in the MICE sector. As chaos theory provides a particularly good model for crisis situations, it is the aim of this paper to propose a chaos theory-based approach to the understanding of complex and chaotic system of the MICE sector in time of crisis.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in onedimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.