89 resultados para Cervical Carcinoma
em University of Queensland eSpace - Australia
Resumo:
Objectives. The MUC1 antigen can be used to identify epithelial cells from the background of hemopoietic cells. The present investigation describes patterns of overexpression of two novel MUC1 splice variants in human cervical carcinoma cell lines. Methods. RT-PCR was carried out to determine MUC1 splice variants in the cervical cancer cell lines C-4 II, C-33A, DoTc 2 4510, C-4 I, SiHa, HT3, Hs 636 T (C4-I), and HeLa. Results. The novel MUC1 splice variant D was expressed in all cell lines and the novel MUC1 splice variant C was expressed in all cell lines but C-33A. Variants A and B were expressed in all (variant A) and all but one (variant B) cell line. MUC1/REP was expressed in all cell lines and MUC1/SEC was positive in all but two cell lines (C-33 A, DoTc 2 4510). All but one cell line (C-33A) expressed MUC1/X and MUC1/Y, and two cell lines (C-33 A, DoTc 2 4510) did not express MUC1/Z, respectively. MUC1 variants A, D, and REP could be demonstrated consistently among all eight cervical carcinoma cell lines we have examined. Conclusions. The present study describes the feasibility of detecting a large number of MUC1 variants, including MUC1 variants C and D which are described for cervical carcinoma cells for the first time. Further studies will examine the presence of MUC1 splice variants' expression in human cervical carcinoma tissue.
Resumo:
Objective. To determine whether squamous cervical cancers exhibit mutations or deletions in MHC class I genes or transport-associated protein (TAP) genes. Methods. Polymerase chain reaction based protocols were used to examine HLA class I and TAP genes in a panel of cervical tumours, using DNA from corresponding blood samples as controls. SSP-PCR protocols were similarly used for examination of all TAP alleles in tumour and blood samples. Results. In a series of cervical carcinomas, 7 of 27 (26%) exhibited mutations in HLA-A genes, while 12 of 23 (52%) exhibited mutations in TAP genes. HLA gene mutations were detected in 2 of 14 CIN2-3 lesions, and TAP gene mutations in none of 14, a frequency significantly less than observed in the cervical carcinoma samples (P < 0.01). The TAP 2A/2B heterozygous genotype was observed with increased frequency in patients with cervical cancer compared to population controls (P < 0.02). Conclusion. These data suggest that TAP genes may be relevant to evolution of cervical cancer from precursor lesions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The effect of adjuvant on induction of human papillomavirus type 16 E7 protein-specific cytotoxic T lymphocytes (CTL) and immunoglobulin G (IgG)(2a) antibody was studied in C57BL/6 J mice immunized with various adjuvants and E7 protein. Quil-A adjuvant, but not complete Freund's adjuvant (CFA) or Algammulin, induced a T-helper 1 (Th1)-type response to E7, which was characterized by CTL activity against a tumour cell line transfected with E7 protein and by E7-specific IgG(2a). All tested adjuvants elicited comparable levels of E7-specific IgG(1). The longest duration and greatest magnitude of CTL response was seen following two immunizations with the highest dose of E7 and Quil-A. Simultaneous immunization with a Th1 and a T helper 2 (Th2)-promoting adjuvant gave a Th1-type response. However, E7 and Quil-A were unable to induce a Th1-type response (as measured by the inability to generate anti-E7 IgG(2a) antibody) in animals with a pre-existing Th2-type response to E7. These results suggest that saponin adjuvants may be suitable for immunotherapy in humans where a Th1-type response is sought, provided that there is no pre existing Th2-type response to the antigen.
Resumo:
The human papillomaviruses (HPVs) are associated with several human epithelial diseases. These diseases are confined to cutaneous and mucosal epithelia and comprise papillomas (warts) and benign or malignant neoplasms. Globally, infection by HPVs presents a considerable health problem given that at any one time approximately 10% of the population may have warts of one form or another. Of more serious concern is the prevalence of HPV-associated cervical carcinoma. It is estimated that 500,000 new cases of cervical neoplasia are diagnosed per year (primarily squamous carcinomas). Thus, HPV-associated cancer represents one of the most common cancers afflicting women and is one of the three most common causes of cancer death among women globally.(15) Although some genotypes of human papillomaviruses are clearly associated with the development of cancer (in particular, HPVs 16 and 18) these viruses share significant structural and functional similarity to the nononcogenic genotypes, and one of the puzzles of HPV biology is why essentially similar viruses vary so widely in their oncogenic potential.
Resumo:
The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-l l (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8(+) cells is down-regulation compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter, Down-regulation did not involve deletion of CD8(+) T cells of high affinity or high avidity, and T-cell receptor (TCR) VP-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge, We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T, Dean et al., J, Virol. 73:6166-6170, 1999), The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.
Resumo:
Up-regulation of receptor-ligand pairs during interaction of an MHC-presented epitope on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In this study, we used replication deficient adenoviruses to introduce a model tumor-associated Ag (the E7 oncoprotein of human papillomavirus 16) and the T cell costimulatory molecule 4-IBBL into murine DCs, and monitored the ability of these recombinant DO to elicit E7-directed T cell responses following immunization. Splenocytes from mice immunized with DCs expressing E7 alone elicited E7-directed effector and memory CTL responses. Coexpression of 4-1BBL in these E7-expressing DO increased effector and memory CTL responses when they were used for immunization. 4-1BBL expression up-regulated CD80 and CD86 second signaling molecules in DO. We also report an additive effect of 4-IBBL and receptor activator of NF-kappaB/receptor activator of NF-kappaB ligand coexpression in E7-transduced DC inummogens on E7-directed effector and memory CTL responses and on MHC class II and CD80/86 expression in DCs. Additionally, expression of 4-1BBL in E7-transduced DCs reduced nonspecific T cell activation characteristic of adenovirus vector-associated immunization. The results have generic implications for improved or tumor Ag-expressing DC vaccines by incorporation of exogenous 4-1BBL. There are also specific implications for an improved DC-based vaccine for human papillomavirus 16-associated cervical carcinoma.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Options for skin cancer treatment currently include surgery, radiotherapy, topical chemotherapy, cryosurgery, curettage, and electrodes-sication. Although effective, surgery is costly and unsuitable for certain patients. Radiotherapy can leave a poor cosmetic effect, and current chemotherapy is limited by low cure rates and extended treatment schedules. Here, we describe the preclinical activity of a novel topical chemotherapeutic agent for the treatment of skin cancer, 3-ingenyl angelate (PEP005), a hydrophobic diterpene ester isolated from the plant Euphorbia peplus. Three daily topical applications of 42 nmol (18 mug) of PEP005 cured a series of s.c. mouse tumors (B16 melanoma, LK2 UV-induced squamous cell carcinoma, and Lewis lung carcinoma; it = >14 tumors/group) and human tumors (DO4 melanoma, HeLa cervical carcinoma, and PC3 and DU145 prostate carcinoma; it = >4 tumors/group) previously established (5-10 mm(3)) on C57BL/6 or Fox1(nu) mice. The treatment produced a mild, short-term erythema and eschar formation but, ultimately, resulted in excellent skin cosmesis. The LD90 for PEP005 for a panel of tumor cell lines was 180-220 muM. Electron microscopy showed that treatment with PEP005 both ill vitro (230 tot) and ill vivo (42 nmol) rapidly caused swelling of mitochondria and cell death by primary necrosis. Cr-51 release, uptake of propidium iodide, and staining with the mitochondria dye JC1, revealed that PEP005 (230 muM) treatment of tumor cells ill vitro resulted in a rapid plasma membrane perturbation and loss of mitochondrial membrane potential. PEP005 thus emerges as a new topical anti-skin cancer agent that has a novel mode of action involving plasma membrane and mitochondrial disruption and primary necrosis, ultimately resulting in an excellent cosmetic outcome.
Resumo:
The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The serine protease inhibitor SerpinB2 (PAI-2), a major product of differentiating squamous epithelial cells, has recently been shown to bind and protect the retinoblastoma protein (Rb) from degradation. In human papillomavirus type 18 (HPV-18) -transformed epithelial cells the expression of the E6 and E7 oncoproteins is controlled by the HPV-18 upstream regulatory region (URR). Here we illustrate that PAI-2 expression in the HPV-18-transformed cervical carcinoma line HeLa resulted in the restoration of Rb expression, which led to the functional silencing of transcription from the HPV-18 URR. This caused loss of E7 protein expression and restoration of multiple E6- and E7-targeted host proteins, including p53, c-Myc, and c-Jun. Rb expression emerged as sufficient for the transcriptional repression of the URR, with repression mediated via the C/EB beta-YY1 binding site (URR 7709 to 7719). In contrast to HeLa cells, where the C/EBP beta-YY1 dimer binds this site, in PAI-2- and/or Rb-expressing cells the site was occupied by the dominant-negative C/EBP beta isoform liver-enriched transcriptional inhibitory protein (LIP). PAI-2 expression thus has a potent suppressive effect on HPV-18 oncogene transcription mediated by Rb and LIP, a finding with potential implications for prognosis and treatment of HPV-transformed lesions.
Resumo:
Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.