5 resultados para Cell swelling

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanisms underlying the swelling of frog red blood cells (RBC), induced by Pacific (P-CTX-1) and Caribbean (C-CTX-1) ciguatoxins (CTXs), were investigated by measuring the length, width and surface of their elliptic shape. P-CTX-1 (0.5 to 5 nM) and C-CTX-1 (1 mu M) induced RBC swelling within 60 min. The CTXs-induced RBC swelling was blocked by apamin (1 mu M) and by Sr2+ (1 mu M). P-CTX-1-induced RBC swelling was prevented and inhibited by H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one(27 mu M), an inhibitor Of Soluble guanylate cyclase (sGC), and NOS blockade by NG methyl-L-arginine (L-NMA; 10 mu M). Cytochalasin D (cytD, 10 mu M) increased RBC surface and mimicked CTX effect but did not prevent the P-CTX-1-induced L-NMA-sensitive extra increase. Calculations revealed that P-CTX-1 and cytD increase RBC total surface envelop and volume. These data strongly suggest that the molecular mechanisms underlying CTXs-induced RBC swelling involve the NO pathway by an activation of the inducible NOS, leading to sGC activation which modulates intracellular cGMP and regulates L-type Ca2+ channels. The resulting increase in intracellular Ca2+ content, in turn, disrupts the actin cytoskeleton, which causes a water influx and triggers a Ca2+-activated K+ current through SK2 isoform channels. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl-secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl(-)dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in chocytes even after exposure to hypertonic or bypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Options for skin cancer treatment currently include surgery, radiotherapy, topical chemotherapy, cryosurgery, curettage, and electrodes-sication. Although effective, surgery is costly and unsuitable for certain patients. Radiotherapy can leave a poor cosmetic effect, and current chemotherapy is limited by low cure rates and extended treatment schedules. Here, we describe the preclinical activity of a novel topical chemotherapeutic agent for the treatment of skin cancer, 3-ingenyl angelate (PEP005), a hydrophobic diterpene ester isolated from the plant Euphorbia peplus. Three daily topical applications of 42 nmol (18 mug) of PEP005 cured a series of s.c. mouse tumors (B16 melanoma, LK2 UV-induced squamous cell carcinoma, and Lewis lung carcinoma; it = >14 tumors/group) and human tumors (DO4 melanoma, HeLa cervical carcinoma, and PC3 and DU145 prostate carcinoma; it = >4 tumors/group) previously established (5-10 mm(3)) on C57BL/6 or Fox1(nu) mice. The treatment produced a mild, short-term erythema and eschar formation but, ultimately, resulted in excellent skin cosmesis. The LD90 for PEP005 for a panel of tumor cell lines was 180-220 muM. Electron microscopy showed that treatment with PEP005 both ill vitro (230 tot) and ill vivo (42 nmol) rapidly caused swelling of mitochondria and cell death by primary necrosis. Cr-51 release, uptake of propidium iodide, and staining with the mitochondria dye JC1, revealed that PEP005 (230 muM) treatment of tumor cells ill vitro resulted in a rapid plasma membrane perturbation and loss of mitochondrial membrane potential. PEP005 thus emerges as a new topical anti-skin cancer agent that has a novel mode of action involving plasma membrane and mitochondrial disruption and primary necrosis, ultimately resulting in an excellent cosmetic outcome.