48 resultados para Cassava wastewater
em University of Queensland eSpace - Australia
Resumo:
This paper describes a feasibility study of a for lactic acid production integrated with are treatment of wastewater from an industrial starch plant. Rhizopus oryzae two strains, Rhizopus arrhizus and Rhizopus oligosporus were tested with respect to their capability to carry out simultaneous saccharification and fermentation to lactic acid using potato wastewater. Rhizopus arrhizus DAR 36017 was identified as a suitable strain that demonstrated a high capacity for starch saccharification and lactic acid synthesis. The optimal conditions, in terms of pH, temperature and starch concentration, for lactic acid production were determined. The selected fungal strain grew well in a pH range from 3.0 to 7.0. The addition of CaCO(3)10 g dm(-3) maintained the pH at 5.0-6.0 and significantly enhanced lactic acid production. Kinetic study revealed that almost complete starch saccharification and a lactic acid yield of 450g kg(-1) could be achieved in 20 h and 28 h cultivation, respectively. The maximum lactic acid production 21 g dm(-3) and mycelial biomass (1.7 g dm(-3)) were obtained at 30degreesC. Besides the multiple bioproducts, total removal of suspended solids and 90% reduction of COD were achieved in a single no-aseptic operation. (C) 2003 Society of Chemical Industry.
Resumo:
The aim of this study is to quantity the effect of filter bed depth and solid waste inputs on the performance of small-scale vermicompost filter beds that treat the soluble contaminants within domestic wastewater. The study also aims to identify environmental conditions within the filters by quantifying the oxygen content and pH of wastewater held within it. Vermicompost is being utilised within commercially available on-site domestic waste treatment systems however, there are few reported studies that have examined this medium for the purpose of wastewater treatment. Three replicate small-scale reactors were designed to enable wastewater sampling at five reactor depths in 10-cm intervals. The surface of each reactor received household solid organic waste and 1301 m(-2) per day of raw domestic wastewater. The solid waste at the filter bed surface leached oxygen demand into the wastewater flowing through it. The oxygen demand was subsequently removed in lower reactor sections. Both nitrification and denitrification occurred in the bed. The extent of denitrification was a function of BOD leached from the solid waste. The environmental conditions measured within the bed were found to be suitable for earthworms living within them. The study identified factors that will affect the performance and application of the vermicompost filtration technology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).
Resumo:
Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.
Resumo:
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.
Resumo:
Due to the complexities involved with measuring activated sludge floc size distributions, this parameter has largely been ignored by wastewater researchers and practitioners. One of the major reasons has been that instruments able to measure particle size distributions were complex, expensive and only provided off-line measurements. The Focused Beam Reflectance Method (FBRM) is one of the rare techniques able to measure the particle size distribution in situ. This paper introduces the technique for monitoring wastewater treatment systems and compares its performance with other sizing techniques. The issue of the optimal focal point is discussed, and similar conclusions as found in the literature for other particulate systems are drawn. The study also demonstrates the capabilities of the FBRM in evaluating the performance of settling tanks. Interestingly, the floc size distributions did not vary with position inside the settling tank flocculator. This was an unexpected finding, and seriously questioned the need for a flocculator in the settling tank. It is conjectured that the invariable size distributions were caused by the unique combination of high solids concentration, low shear and zeolite dosing. (C) 2004 Society of Chemical Industry.
Resumo:
The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30degreesC was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%similar to85.5% associated with 1.5similar to2.0 g/L fungal biomass produced in 36 h of fermentation.
Resumo:
Biological wastewater treatment is a complex, multivariate process, in which a number of physical and biological processes occur simultaneously. In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to profile and characterise Lagoon 115E, a multistage biological lagoon treatment system at Melbourne Water's Western Treatment Plant (WTP) in Melbourne, Australia. In this study, the objective was to increase our understanding of the multivariate processes taking place in the lagoon. The data used in the study span a 7-year period during which samples were collected as often as weekly from the ponds of Lagoon 115E and subjected to analysis. The resulting database, involving 19 chemical and physical variables, was studied using the multivariate data analysis methods PCA and PARAFAC. With these methods, alterations in the state of the wastewater due to intrinsic and extrinsic factors could be discerned. The methods were effective in illustrating and visually representing the complex purification stages and cyclic changes occurring along the lagoon system. The two methods proved complementary, with each having its own beneficial features. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The feasibility of using photosynthetic sulfide-oxidizing bacteria to remove sulfide from wastewater in circumstances where axenic cultures are unrealistic has been completely reconsidered on the basis of known ecophysiological data, and the principles of photobioreactor and chemical reactor engineering. This has given rise to the development of two similar treatment concepts relying on biofilms dominated by green sulfur bacteria (GSB) that develop on the exterior of transparent surfaces suspended in the wastewater. The GSB are sustained and selected for by radiant energy in the band 720 - 780 nm, supplied from within the transparent surface. A model of one of these concepts was constructed and with it the reactor concept was proven. The dependence of sulfide-removal rate on bulk sulfide concentration has been ascertained. The maximum net areal sulfide removal rate was 2.23 g m(-2) day(-1) at a bulk sulfide concentration of 16.5 mg L-1 and an incident irradiance of 1.51 W m(-2). The system has a demonstrated capacity to mitigate surges in sulfide load, and appears to use much less radiant power than comparable systems. The efficacy with which this energy was used for sulfide removal was 1.47 g day(-1) W-1. The biofilm was dominated by GSB, and evidence gathered indicated that other types of phototrophs were not present. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The performance of a sulfide-removal system based on biofilms dominated by green sulfur bacteria (GSB) has been investigated. The system was supplied with radiant energy in the band 720-780 nm, and fed with a synthetic wastewater. The areal net sulfide removal rate and the efficacy of the incident radiant energy for sulfide removal have been characterized over ranges of bulk sulfide concentration (1.6-11.5 mg L-1) and incident irradiance (0.21-1.51 W m(-2)). The areal net sulfide removal rate increased monotonically with both increasing incident irradiance and increasing bulk sulfide concentration. The efficacy of the radiant energy for sulfide removal (the amount of sulfide removed per unit radiant energy supplied) also increased monotonically with rising bulk sulfide concentration, but exhibited a maximum value with respect to incident irradiance. The maximum observed values of this net removal rate and this efficacy were, respectively, 2.08 g m(-2) d(-1) and 2.04 g W-1 d(-1). In-band changes in the spectral composition of the radiant energy affected this efficacy only slightly. The products of sulfide removal were sulfate and elemental-S. The elemental-S was scarcely released into the liquid, however, and reasons for this, such as sulfur reduction and polysulfide formation, are considered. Between 1.45 and 3.85 photons were needed for the net removal of one electron from S-species. Intact samples of the biofilm were characterized by microscopy, and their thicknesses lay between 39 +/- 9 and 429 +/- 57 mum. The use of the experimentally determined rates and efficacies for the design of a pilot-scale system is illustrated. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N-2 adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87-0.97 g/g starch associated with 1.5-2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.
Resumo:
The biochemical kinetic of simultaneous saccharification and fermentation (SSF) for lactic acid production by fungal species of Rhizopus arrhizus 36017 and Rhizopus oryzae 2062 was studied with respect to growth pH, temperature and substrate. Both R. arrhizus 36017 and R. oryzae 2062 had a capacity to carry out a single stage SSF process for lactic acid production from potato starch wastewater. The kinetic characteristics, termed as starch hydrolysis, accumulation of reducing sugars, lactic acid production and fungal biomass formation, were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.85-0.92 g/g associated with 1.5-3.5 g/l fungal biomass produced in 36-48 h fermentation. R. arrhizus 36017 had a higher capacity to produce lactic acid, while R. oryzae 2062 produced more fungal biomass under similar conditions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.