82 resultados para Cardiovascular Disease Risk Factors
em University of Queensland eSpace - Australia
Resumo:
Objectives To assess the associations between three measurements of socioeconomic position (SEP) - education, occupation and ability to cope on available income - and cardiovascular risk factors in three age cohorts of Australian women. Methods Cross-sectional analysis of three cohorts of Australian women aged 18-23, 45-50 and 70-75 years. Results In general, for all exposures and in all three cohorts, the odds of each adverse risk factor (smoking, obesity and physical inactivity) were lower in the most advantaged compared with the least advantaged. Within each of the three cohorts, the effects of each measurement of SEP on the outcomes were similar. There were, however, some notable between-cohort differences. The most marked differences were those with smoking. For women aged 70-75 (older), those with the highest educational attainment were more likely to have ever smoked than those with the lowest level of attainment. However, for the other two cohorts, this association was reversed, with a stronger association between low levels of education and ever smoking among those aged 18-23 (younger) than those aged 45-50 (mid-age). Similarly, for older women, those in the most skilled occupational classes were most likely to have ever smoked, with opposite findings for mid-age women. Education was also differently associated with physical inactivity across the three cohorts. Older women who were most educated were least likely to be physically inactive, whereas among the younger and mid-age cohorts there was little or no effect of education on physical inactivity. Conclusion These findings demonstrate the dynamic nature of the association between SEP and some health outcomes. Our findings do not appear to confirm previous suggestions that prestige-based measurements of SEP are more strongly associated with health-related behaviours than measurements that reflect material and psychosocial resources.
Resumo:
Metabolism, in part, is regulated by the peroxisome proliferator-activated receptors (PPARs). The PPARs act as nutritional lipid sensors and three mammalian PPAR subtypes designated PPARalpha (NR1C1), PPARgamma (NR1C3) and PPARdelta (NR1C2) have been identified. This subgroup of nuclear hormone receptors binds DNA and controls gene expression at the nexus of pathways that regulate lipid and glucose homeostasis, energy storage and expenditure in an organ-specific manner. Recent evidence has demonstrated activation of PPARdelta in the major mass peripheral tissue (ie, adipose and skeletal muscle). It enhances glucose tolerance, insulin-stimulated glucose disposal, lipid catabolism, energy expenditure, cholesterol efflux and oxygen consumption. These effects positively influence the blood-lipid profile. Furthermore, PPARdelta activation produces a predominant type I/slow twitch/oxidative muscle fiber phenotype that leads to increased endurance, insulin sensitivity and resistance to obesity. PPARdelta has rapidly emerged as a potential target in the battle against dyslipidemia, insulin insensitivity, type II diabetes and obesity, with therapeutic efficacy in the treatment of cardiovascular disease risk factors. GW-501516 is currently undergoing phase II safety and efficacy trials in human volunteers for the treatment of dyslipidemia. The outcome of these clinical trials are eagerly awaited against a background of conflicting reports about cancer risks in genetically predisposed animal models. This review focuses on the potential pharmacological utility of selective PPARdelta agonists in the context of risk factors associated with metabolic and cardiovascular disease.
Resumo:
Background: Rates of cardiovascular disease and renal disease in Australian Aboriginal communities are high, as is the prevalence of some 'traditional' cardiovascular (CV) risk factors, such as diabetes and cigarette smoking. Recent work has highlighted the importance of markers of inflammation, such as C-reactive protein (CRP), homocysteine and albuminuria as predictors of cardiovascular risk in urban westernised settings. It is not clear how these factors relate to outcome in the setting of these remote communities, but very high CRP concentrations have been shown in this and other Aboriginal communities. Methods and results: In a cross-sectional survey including 237 adults in a remote Aboriginal community in the Northern Territory of Australia, we measured carotid intima-media thickness (IMT), together with blood pressure, diabetes, lipid levels, smoking and albuminuria, CRP and fibrinogen, serum homocysteine concentration, and IgG titres for Chlamydia pneumoniae, Helicobacter pylori and cytomegalovirus. Median carotid IMT was 0.63 [interquartile range 0.54-0.71] mm. As a categorical outcome, the prevalence of the highest IMT quartile ('increased IMT', greater than or equal to0.72 mm) was compared with the lower three quartiles. Increased IMT was associated in univariate analyses with greater waist circumference, systolic BP, fibrinogen and serum albumin concentrations, urine albumin/creatinine ratio and older age as continuous variables. Associations of increased IMT with some continuous variables were not linear; univariate associations were seen with the highest quartile (versus all other quartiles) of CRP and homocysteine concentration and CMV IgG titre. In a multivariate model age, smoking, waist circumference and the highest quartile of CRP concentrations (greater than or equal to14 mg/l) remained significant predictors of IMT greater than or equal to0.72 mm. Conclusions: Measurement of carotid IMT was possible in this remote setting. Increased IMT (greater than or equal to0.72 mm) was associated with increased CRP concentrations over a range that suggests infection/inflammation may be important determinants of cardiovascular risk in this setting. The associations of IMT with markers of renal disease seen in univariate analyses were explained in this analysis by confounding due to the associations of urine ACR with other risk factors. (C) 2004 Published by Elsevier Ireland Ltd.
Resumo:
Objectives: The objectives of this study were to examine the extent of clustering of smoking, high levels of television watching, overweight, and high blood pressure among adolescents and whether this clustering varies by socioeconomic position and Cognitive function. Methods: This study was a cross-sectional analysis of 3613 (1742 females) participants of an Australian birth cohort who were examined at age 14. Results: Three hundred fifty-three (9.8%) of the participants had co-occurrence of three or four risk factors. Risk factors clustered in these adolescents with a greater number of participants than would be predicted by assumptions of independence having no risk factors and three or four risk factors. The extent of clustering tended to be greater in those from lower-income families and among those with lower cognitive function. The age-adjusted ratio of observed to expected cooccurrence of three or four risk factors was 2.70 (95% confidence interval [Cl], 1.80-4.06) among those from low-income families and 1.70 (95% Cl, 1.34-2.16) among those from more affluent families. The ratio among those with low Raven's scores (nonverbal reasoning) was 2.36 (95% Cl, 1.69-3.30) and among those with higher scores was 1.51 (95% Cl, 1.19-1.92); similar results for the WRAT 3 score (reading ability) were 2.69 (95% Cl, 1.85-3.94) and 1.68 (95% Cl, 1.34-2.11). Clustering did not differ by sex. Conclusion: Among adolescents, coronary heart disease risk factors cluster, and there is some evidence that this clustering is greater among those from families with low income and those who have lower cognitive function.
Resumo:
Background We present a method (The CHD Prevention Model) for modelling the incidence of fatal and nonfatal coronary heart disease (CHD) within various CHD risk percentiles of an adult population. The model provides a relatively simple tool for lifetime risk prediction for subgroups within a population. It allows an estimation of the absolute primary CHD risk in different populations and will help identify subgroups of the adult population where primary CHD prevention is most appropriate and cost-effective. Methods The CHD risk distribution within the Australian population was modelled, based on the prevalence of CHD risk, individual estimates of integrated CHD risk, and current CHD mortality rates. Predicted incidence of first fatal and nonfatal myocardial infarction within CHD risk strata of the Australian population was determined. Results Approximately 25% of CHD deaths were predicted to occur amongst those in the top 10 percentiles of integrated CHD risk, regardless of age group or gender. It was found that while all causes survival did not differ markedly between percentiles of CHD risk before the ages of around 50-60, event-free survival began visibly to differ about 5 years earlier. Conclusions The CHD Prevention Model provides a means of predicting future CHD incidence amongst various strata of integrated CHD risk within an adult population. It has significant application both in individual risk counselling and in the identification of subgroups of the population where drug therapy to reduce CHD risk is most cost-effective. J Cardiovasc Risk 8:31-37 (C) 2001 Lippincott Williams & Wilkins.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
Objective: To assess the impact of structured diabetes care in a rural general practice. Design and setting: A cohort study of structured diabetes care (care plans, multidisciplinary involvement and regular patient recall) in a large general practice in a medium-sized Australian rural town. Medical care followed each doctor's usual practice. Participants: The first 404 consecutive patients with type 2 diabetes who consented to take part in the program were evaluated 24 months after enrolment in July 2002 to December 2003. Main outcome measures: Change in cardiovascular disease risk factors (waist circumference, body mass index, serum lipid levels, blood pressure); change in indicators of risks associated with poorly controlled diabetes (glycated haemoglobin [HbA1(c]) concentration, foot lesions, clinically significant hypoglycaemia); change in 5-year cardiovascular disease risk. Results: Women had a lower 5-year risk of a cardiovascular event at enrolment than men. Structured care was associated with statistically significant reductions in mean cardiovascular disease risk factors (waist circumference, -2.6 cm; blood pressure [systolic, -3 mmHg; diastolic -7 mmHg]; and serum lipid levels [total cholesterol, -0.5 mmol/L; HDL cholesterol, 0.02 mmol/L; LDL cholesterol, -0.4 mmol/L; triglycerides, -0.3 mmol/L]); and improvements in indicators of diabetic control (proportion with severe hypoglycaemic events, -2.2%; proportion with foot lesions, -14%). The greatest improvements in risk factors occurred in patients with the highest calculated cardiovascular risk. There was a statistically significant increase in the proportion of patients with ideal blood pressure (systolic,
Resumo:
Background: Several studies have shown that variation in serum gamma-glutamyltransferase (GGT) in the population is associated with risk of death or development of cardiovascular disease, type 2 diabetes, stroke, or hypertension. This association is only partly explained by associations between GGT and recognized risk factors. Our aim was to estimate the relative importance of genetic and environmental sources of variation in GGT as well as genetic and environmental sources of covariation between GGT and other liver enzymes and markers of cardiovascular risk in adult twin pairs. Methods: We recruited 1134 men and 2241 women through the Australian Twin Registry. Data were collected through mailed questionnaires, telephone interviews, and by analysis of blood samples. Sources of variation in GGT, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) and of covariation between GGT and cardiovascular risk factors were assessed by maximum-likelihood model-fitting. Results: Serum GGT, ALT, and AST were affected by additive genetic and nonshared environmental factors, with heritabilities estimated at 0.52, 0.48, and 0.32, respectively. One-half of the genetic variance in GGT was shared with ALT, AST, or both. There were highly significant correlations between GGT and body mass index; serum lipids, lipoproteins, glucose, and insulin; and blood pressure. These correlations were more attributable to genes that affect both GGT and known cardiovascular risk factors than to environmental factors. Conclusions: Variation in serum enzymes that reflect liver function showed significant genetic effects, and there was evidence that both genetic and environmental factors that affect these enzymes can also affect cardiovascular risk. (C) 2002 American Association for Clinical Chemistry.
Resumo:
Objective To determine the relative importance of recognised risk factors for non-haemorrhagic stroke, including serum cholesterol and the effect of cholesterol-lowering therapy, on the occurrence of non-haemorrhagic stroke in patients enrolled in the LIPID (Long-term Intervention with Pravastatin in Ischaemic Disease) study. Design The LIPID study was a placebo-controlled, double-blind trial of the efficacy on coronary heart disease mortality of pravastatin therapy over 6 years in 9014 patients with previous acute coronary syndromes and baseline total cholesterol of 4-7 mmol/l. Following identification of patients who had suffered non-haemorrhagic stroke, a pre-specified secondary end point, multivariate Cox regression was used to determine risk in the total population. Time-to-event analysis was used to determine the effect of pravastatin therapy on the rate of non-haemorrhagic stroke. Results There were 388 non-haemorrhagic strokes in 350 patients. Factors conferring risk of future non-haemorrhagic stroke were age, atrial fibrillation, prior stroke, diabetes, hypertension, systolic blood pressure, cigarette smoking, body mass index, male sex and creatinine clearance. Baseline lipids did not predict non-haemorrhagic stroke. Treatment with pravastatin reduced non-haemorrhagic stroke by 23% (P= 0.016) when considered alone, and 21% (P= 0.024) after adjustment for other risk factors. Conclusions The study confirmed the variety of risk factors for non-haemorrhagic stroke. From the risk predictors, a simple prognostic index was created for nonhaemorrhagic stroke to identify a group of patients at high risk. Treatment with pravastatin resulted in significant additional benefit after allowance for risk factors. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Background: Indigenous Australians are at high risk for cardiovascular disease and type 2 diabetes. Carotid artery intimal medial thickness (CIMT) and brachial artery flow-mediated vasodilation (FMD) are ultrasound imaging based surrogate markers of cardiovascular risk. This study examines the relative contributions of traditional cardiovascular risk factors on CIMT and FMD in adult Indigenous Australians with and without type 2 diabetes mellitus. Method: One hundred and nineteen Indigenous Australians were recruited. Physical and biochemical markers of cardiovascular risk, together with CIMT and FMD were meausred for all subjects. Results: Fifty-three Indigenous Australians subjects (45%) had type 2 diabetes mellitus. There was a significantly greater mean CIMT in diabetic versus non-diabetic subjects (p = 0.049). In the non-diabetic group with non-parametric analyses, there were significant correlations between CIMT and: age (r = 0.64, p < 0.001), systolic blood pressure (r = 0.47, p < 0.001) and non-smokers (r = -0.30, p = 0.018). In the diabetic group, non-parametric analysis showed correlations between CIMT, age (r = 0.36, p = 0.009) and duration of diabetes (r = 0.30, p = 0.035) only. Adjusting forage, sex, smoking and history of cardiovascular disease, Hb(A1c) became the sole significant correlate of CIMT (r = 0.35,p = 0.01) in the diabetic group. In non-parametric analysis, age was the sole significant correlate of FMD (r = -0.31,p = 0.013), and only in non-diabetic subjects. Linear regression analysis showed significant associations between CIMT and age (t = 4.6,p < 0.001), systolic blood pressure (t = 2.6, p = 0.010) and Hb(A1c) (t = 2.6, p = 0.012), smoking (t = 2.1, p = 0.04) and fasting LDL-cholesterol (t = 2.1, p = 0.04). There were no significant associations between FMD and examined cardiovascular risk factors with linear regression analysis Conclusions: CIMT appears to be a useful surrogate marker of cardiovascular risk in this sample of Indigenous Australian subjects, correlating better than FMD with established cardiovascular risk factors. A lifestyle intervention programme may alleviate the burden of cardiovascular disease in Indigenous Australians by reducing central obesity, lowering blood pressure, correcting dyslipidaemia and improving glycaemic control. CIMT may prove to be a useful tool to assess efficacy of such an intervention programme. (c) 2004 Elsevier Ireland Ltd. All rights reserved.