4 resultados para Carbonate precipitation
em University of Queensland eSpace - Australia
Resumo:
Mesoproterozoic marine successions worldwide record a shift in average delta(13)C values from 0 to +3.5parts per thousand, with the latter value evident in successions younger than 1250 Ma. New carbon isotope data from the similar to 1300 to 1270 Ma Dismal Lakes Group, Arctic Canada, provide further insight into this fundamental transition. Data reveal that the shift to higher VC values was gradual and marked by occasional excursions to values less than 0 parts per thousand. When compared to records from older and younger marine successions, it is evident that the difference between isotopic minima and maxima increased with time, indicating that the marine system evolved to become isotopically more variable. We interpret these patterns to record an increase in the crustal inventory of organic carbon, reflecting eukaryotic diversification and a change in the locus of organic carbon burial to include anoxic deep marine sites where preservation potential was high. We speculate that the release of O-2 to Earth's surface environments associated with increased organic carbon storage induced irreversible changes in the Mesoproterozoic biosphere, presaging the more extreme environmental and evolutionary developments of the Neoproterozoic.
Resumo:
Mudrocks and carbonates of the Isa superbasin in the Lawn Hill platform in northern Australia host major base metal sulfide mineralization, including the giant strata-bound Century Zn-Pb deposit. Mineral paragenesis, stable isotope, and K-Ar dating studies demonstrate that long-lived structures such as the Termite Range fault acted as hot fluid conduits several times during the Paleoproterozoic and Mesoproterozoic in response to major tectonic events. Illite and chlorite crystallinity studies suggest the southern part of the platform has experienced higher temperatures (up to 300 degrees C) than similar stratigraphic horizons in the north. The irregular downhole variation of illite crystallinity values provides further information oil the thermal regime in the basin and shows that clay formation was controlled not only by temperature increase with depth but also by high water/rock ratios along relatively permeable zones. K-Ar dating of illite, in combination with other data, may indicate three major thermal events in the central and northern Lawn Hill platform Lit 1500, 1440 to 1400, and 1250 to 1150 Ma. This study did not detect the earlier Century base metal mineralizing event at 1575 Ma. 1500 Ma ages are recorded only in the south and correspond to the age of the Late Isan orogeny and deposition of the Lower Roper superbasin. They may reflect exhumation of a provenance region. The 1440 to 1300 Ma ages are related to fault reactivation and a thermal pulse at similar to 1440 to 1400 Ma possibly accompanied by fluid flow, with subsequent enhanced cooling possibly due to thermal relaxation or further crustal exhumation. The youngest thermal and/or fluid-flow event at 1250 to 1150 Ma is recorded mainly to the cast of the Tern-lite Range fault and may be related to the assembly of the Rodinian supercontinent. Fluids in equilibrium with illite that formed over a range of temperatures, at different times in different parts of the platform. have relatively uniform oxygen isotope compositions and more variable hydrogen isotope compositions (delta O-18 = 3.5-9.7 parts per thousand V-SMOW; delta D = -94 to -36 parts per thousand V-SMOW). The extent of the 180 enrichment and the variably depleted hydrogen isotope compositions suggest the illite interacted with deep-basin hypersaline brines that were composed of evaporated seawater and/or highly evolved meteoric water. Siderite is the most abundant iron-rich gangue phase in the Century Zn-Pb deposit, which is surrounded by all extensive ferroan carbonate alteration halo. Modeling suggests that the ore siderite formed at temperatures of 120 degrees to 150 degrees C, whereas siderite and ankerite in the alteration halo formed at temperatures of 150 degrees to 180 degrees C. The calculated isotopic compositions of the fluids are consistent with O-18-rich basinal brines and mixed inorganic and organic carbon Sources (6180 = 3-10 parts per thousand V-SMOW, delta C-13 = -7 to -3 parts per thousand V-PDB). in the northeast Lawn Hill platform carbonate-rich rocks preserve marine to early diagenetic carbon and oxygen isotope compositions, whereas ferroan carbonate cements in siltstones and shales in the Desert Creek borehole are O-18 and C-13 depleted relative to the sedimentary carbonates. The good agreement between temperature estimates from illite crystallinity and organic reflectance (160 degrees-270 degrees C) and inverse correlation with carbonate delta O-18 values indicates that organic maturation and carbonate precipitation in the northeast Lawn Hill platform resulted from interaction with the 1250 to 1150 Ma fluids. The calculated isotopic compositions of the fluid are consistent with evolved basinal brine (delta O-18 = 5.1-9.4 parts per thousand V-SMOW; delta C-13 = -13.2 to -3.7 parts per thousand V-PDB) that contained a variable organic carbon component from the oxidation and/or hydrolysis of organic matter in the host sequence. The occurrence of extensive O-18- and C-13-depleted ankerite and siderite alteration in Desert Creek is related to the high temperature of the 1250 to 1150 Ma fluid-flow event in the northeast Lawn Hill platform, in contrast to the lower temperature fluids associated with the earlier Century Zn-Pb deposit in the central Lawn Hill platform.
Resumo:
Abundant illite precipitation, in Proterozoic rocks from Northern Lawn Hill Platform, Mt Isa Basin, Australia, occurred in organic matter-rich black shales rather than in sandstones, siltstones and organic matter-poor shales. Sandstones and siltstones acted as impermeable rocks, as early diagenetic quartz and carbonate minerals reduced the porosity-permeability. Scanning and transmission electron microscopy (SEM and TEM) studies indicate a relation between creation of microporosity-permeability and organic matter alteration, suitable for subsequent mineral precipitation. K-Ar data indicate that organic matter alteration and the subsequent illite precipitation within the organic matter occurred during the regional hydrothermal event at 1172 +/- 150 (2sigma) Ma. Hot circulating fluids are considered to be responsible for organic matter alteration, migration and removal of volatile hydrocarbon, and consequently porosity-permeability creation. Those rocks lacking sufficient porosity-permeability, such as sandstones, siltstones and organic matter poor shales, may not have been affected by fluid movement. In hydrothermal systems, shales and mudstones may not be impermeable as usually assumed because of hydrocarbons being rapidly removed by fluid, even with relatively low total organic carbon.