3 resultados para Capsular polysaccharide structure

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The capsular polysaccharide and type I fimbriae are two of the major surface-located virulence properties associated with the pathogenesis of Klebsiella pneumoniae. The capsule is an elaborate polysaccharide matrix that encases the entire cell surface and provides resistance against many host defense mechanisms. In contrast, type 1 fimbriae are thin adhesive thread-like surface organelles that can extend beyond the capsular matrix and mediate D-mannose-sensitive adhesion to host epithelial cells. These fimbriae are archetypical and consist of a major building block protein (FimA) that comprises the bulk of the organelle and a tip-located adhesin (FimH). It is assumed that the extended major-subunit protein structure permits the FimH adhesin to function independently of the presence of a capsule. In this study, we have employed a defined set of K. pneumoniae capsulated and noncapsulated strains to show that the function of type I fimbriae is actually impeded by the concomitant expression of a polysaccharide capsule. Capsule expression had significant effects on two parameters commonly used to define FimH function, namely, yeast cell agglutination and biofilm formation. Our data suggest that this effect is not due to transcriptional/translational changes in fimbrial gene/protein expression but rather the result of direct physical interference. This was further demonstrated by the fact that we could restore fimbrial function by inhibiting capsule synthesis. It remains to be determined whether the expression of these very different surface components occurs simply via random events of phase variation or in a coordinated manner in response to specific environmental cues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the conservation and antibody accessibility of inner core epitopes of Neisseria meningitidis lipopolysaccharide (LPS) because of their potential as vaccine candidates. An immunoglobulin G3 murine monoclonal antibody (MAb), designated MAb B5, was obtained by immunizing mice with a galE mutant of N. meningitidis H44/76 (B.15.P1.7,16 immunotype L3). We have shown that MAb B5 can bind to the core LPS of wild-type encapsulated MC58 (B.15.P1.7,16 immunotype L3) organisms in vitro and ex vivo. An inner core structure recognized by MAb B5 is conserved and accessible in 26 of 34 (76%) of group B and 78 of 112 (70%) of groups A, C, W, X, Y, and Z strains. N. meningitidis strains which possess this epitope are immunotypes in which phosphoethanolamine (PEtn) is linked to the 3-position of the beta-chain heptose (HepII) of the inner core. In contrast, N. neningitidis strains lacking reactivity with MAb B5 have an alternative core structure in which PEtn is linked to an exocyclic position (i.e., position 6 or 7) of HepII (immunotypes L2, L4, and L6) or is absent (immunotype L5). We conclude that MAb B5 defines one or more of the major inner core glycoforms of N. meningitidis LPS. These findings support the possibility that immunogens capable of eliciting functional antibodies specific to inner core structures could be the basis of a vaccine against invasive infections caused by N. meningitidis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polysaccharides extracted from Claviclonium ovatum were studied by a combination of compositional assays, reductive partial hydrolysis, linkage analysis, Fourier Transform infrared (FTIR) spectroscopy, and C-13, H-1, and C-13/H-1 heteronuclear multiple quantum correlation (HMQC) two-dimensional nuclear magnetic resonance (NMR) spectroscopy. The chemical and spectroscopic data showed that the alkali-modified C. ovatum polysaccharides are composed of a nearly idealized repeating unit of 6'-O-methylcarrabiose 2,4'-disulfate (the repeating unit of 6-O-methylated iota-earrageenan), although some minor components were also present. The C. ovatum galactans are the most highly methylated carrageenans reported. (C) 2004 Elsevier Ltd. All rights reserved.