10 resultados para Cape York

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors describe rock art dating research in Australia using the oxalate method While the array of dates obtained (which range from c. 1200 to c. 25000 BP) show a satisfactory correlation with other archaeological data, there are mismatches which suggest that some motifs were often imitated by later artists, and/or that the mineral accretions continued to form periodically, perhaps continuously, as a regional phenomenon over a long period of time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adult mosquitoes (Diptera: Culicidae) were collected in January and February 2000 from Saibai Island in the Torres Strait of northern Australia, and processed for arbovirus isolation during a period of Japanese encephalitis (JE) virus activity on nearby Badu Island. A total of 84 2 10 mosquitoes were processed for virus isolation, yielding six flavivirus isolates. Viruses obtained were single isolates of JE and Kokobera (KOK) and four of Kunjin (KUN). All virus isolates were from members of the Culex sitiens Weidemann subgroup, which comprised 53.1 % of mosquitoes processed. Nucleotide sequencing and phylogenetic analysis of the pre-membrane region of the genome of JE isolate TS5313 indicated that it was closely related to other isolates from a sentinel pig and a pool of Cx. gelidus Theobald from Badu Island during the same period. Also molecular analyses of part of the envelope gene of KUN virus isolates showed that they were closely related to other KUN virus strains from Cape York Peninsula. The results indicate that flaviviruses are dynamic in the area, and suggest patterns of movement south from New Guinea and north from the Australian mainland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel flavivirus isolates from mosquitoes collected in northern Australia were analysed by partial genomic sequencing, monoclonal antibody-binding assays and polyclonal cross-neutralization tests. Two isolates were found to be antigenically distinct from, but related to, viruses of the Kokobera virus complex, which currently contains Kokobera (KOKV) and Stratford (STRV) viruses. Nucleotide sequence comparison of two separate regions of the genome revealed that an isolate from Saibai Island in the Torres Strait in 2000 (TS5273) was related closely to KOKV and STRV, with 74-80 and 75-76% nucleotide similarity, respectively. An isolate from mainland Cape York in 1998 (CY1014) was found to be more divergent from KOKV and STRV, with

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alfuy virus (ALFV) is classified as a subtype of the flavivirus Murray Valley encephalitis virus (MVEV); however, despite preliminary reports of antigenic and ecological similarities with MVEV, ALFV has not been associated with human disease. Here, it was shown that ALFV is at least 10(4)-fold less neuroinvasive than MVEV after peripheral inoculation of 3-week-old Swiss outbred mice, but ALFV demonstrates similar neurovirulence. In addition, it was shown that ALFV is partially attenuated in mice that are deficient in alpha/beta interferon responses, in contrast to MVEV which is uniformly lethal in these mice. To assess the antigenic relationship between these viruses, a panel of monoclonal antibodies was tested for the ability to bind to ALFV and MVEV in ELISA. Although the majority of monoclonal antibodies recognized both viruses, confirming their antigenic similarity, several discriminating antibodies were identified. Finally, the entire genome of the prototype strain of ALFV (MRM3929) was sequenced and phylogenetically analysed. Nucleotide (73%) and amino acid sequence (83 %) identity between ALFV and IMVEV confirmed previous reports of their close relationship. Several nucleotide and amino acid deletions and/or substitutions with putative functional significance were identified in ALFV, including the abolition of a conserved glycosylation site in the envelope protein and the deletion of the terminal dinucleotide 5'-CUOH-3' found in all other members of the genus. These findings confirm previous reports that ALFV is closely related to IMVEV, but also highlights significant antigenic, genetic and phenotypic divergence from MVEV. Accordingly, the data suggest that ALFV is a distinct species within the serogroup Japanese encephalitis virus.