191 resultados para Cancer - Mortality
em University of Queensland eSpace - Australia
Resumo:
Objective To investigate whether people diagnosed with cancer have an increased risk of death from non-cancer causes compared to the general population. Methods The non-cancer mortality of people diagnosed with cancer in Queensland (Australia) between 1982 and 2002 who had not died before 1 January 1993 was compared to the mortality of the total Queensland population, matching by age group and sex, and reporting by standardised mortality ratios. Results Compared to the non-cancer mortality in the general population, cancer patients (all cancers combined) were nearly 50% more likely to die of non-cancer causes (SMR = 149.9, 95% CI = [147-153]). This varied by cancer site. Overall melanoma patients had significantly lower non-cancer mortality, female breast cancer patients had similar non-cancer mortality to the general population, while increased non-cancer mortality risks were observed for people diagnosed with cervical cancer, colorectal cancer, prostate cancer, non-Hodgkin lymphoma and lung cancer. Conclusions Although cancer-specific death rates underestimate the mortality directly associated with a diagnosis of cancer, quantifying the degree of underestimation is difficult due to various competing explanations. There remains an important role for future research in understanding the causes of morbidity among cancer survivors, particularly those looking at both co-morbid illnesses and reductions in quality of life.
Resumo:
The purpose of this work was to model lung cancer mortality as a function of past exposure to tobacco and to forecast age-sex-specific lung cancer mortality rates. A 3-factor age-period-cohort (APC) model, in which the period variable is replaced by the product of average tar content and adult tobacco consumption per capita, was estimated for the US, UK, Canada and Australia by the maximum likelihood method. Age- and sex-specific tobacco consumption was estimated from historical data on smoking prevalence and total tobacco consumption. Lung cancer mortality was derived from vital registration records. Future tobacco consumption, tar content and the cohort parameter were projected by autoregressive moving average (ARIMA) estimation. The optimal exposure variable was found to be the product of average tar content and adult cigarette consumption per capita, lagged for 2530 years for both males and females in all 4 countries. The coefficient of the product of average tar content and tobacco consumption per capita differs by age and sex. In all models, there was a statistically significant difference in the coefficient of the period variable by sex. In all countries, male age-standardized lung cancer mortality rates peaked in the 1980s and declined thereafter. Female mortality rates are projected to peak in the first decade of this century. The multiplicative models of age, tobacco exposure and cohort fit the observed data between 1950 and 1999 reasonably well, and time-series models yield plausible past trends of relevant variables. Despite a significant reduction in tobacco consumption and average tar content of cigarettes sold over the past few decades, the effect on lung cancer mortality is affected by the time lag between exposure and established disease. As a result, the burden of lung cancer among females is only just reaching, or soon will reach, its peak but has been declining for I to 2 decades in men. Future sex differences in lung cancer mortality are likely to be greater in North America than Australia and the UK due to differences in exposure patterns between the sexes. (c) 2005 Wiley-Liss, Inc.
Resumo:
This review describes the changes in composition of mortality by major attributed cause during the Australian mortality decline this century. The principal categories employed were: infectious diseases, nonrheumatic cardiovascular disease, external causes, cancer,'other' causes and ill-defined conditions. The data were age-adjusted. Besides registration problems (which also affect all-cause mortality) artefacts due to changes in diagnostic designation and coding-are evident. The most obvious trends over the period are the decline in infectious disease mortality (half the decline 1907-1990 occurs before 1949), and the epidemic of circulatory disease mortality which appears to commence around 1930, peaks during the 1950s and 1960s, and declines from 1970 to 1990 (to a rate half that at the peak). Mortality for cancer remains static for females after 1907, but increases steadily for males, reaching a plateau in the mid-1980s (owing to trends in lung cancer); trends in cancers of individual sites are diverse. External cause mortality declines after 1970. The decline in total mortality to 1930 is associated with decline in infection and 'other' causes, Stagnation of mortality decline in 1930-1940 and 1946-1970 for males is a consequence of contemporaneous movements in opposite directions of infection mortality (decrease) and circulatory disease and cancer mortality (increase). In females, declines in infections and 'other' causes of death exceed the increase in circulatory disease mortality until 1960, then stability in all major causes of death to 1970. The overall mortality decline since 1970 is a consequence of a reduction in circulatory disease,'other' cause, external cause and infection mortality, despite the increase in cancer mortality (for males).
Resumo:
This study investigates the relationship between the number of screening mammograms read by radiologists and the screening breast cancer detection rate. Cancer detection rates for incident screens (all women aged >= 40 years) were compared by increasing categories of reader volume using Poisson regression. Data from New South Wales (NSW) for a 2 year period (2000-2001) were obtained from the BreastScreen NSW programme. Cancer detection rates increased with the number of mammograms read in the programme, reaching a plateau of approximately 40 per 10,000 after 1375 mammograms per year. No significant differences in cancer detection were evident above 875 mammograms (compared to below 875 mammograms) per year (RR = 0.79, 95% CI 0.63-0.99). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: The aims of this study were to identify differences in oral cancer incidence and mortality between sexes, age groups, oral sites and Australian States and Territories and recent trends in oral cancer incidence, mortality and age-profile over time. Methods: Data were obtained from the Australian Institute for Health and Welfare and were age-standardized to the Australian 1991 Population Standard. Differences and trends were assessed with the Wilcoxon matched-pairs signed-ranks test and the Spearman correlation test, respectively. Results: In Australia in 1996, there were 2173 new oral cancers and 400 deaths due to oral cancer, the majority of oral cancers were in the 60+ age group, oral cancer affected men more than women (>2:1), lip cancer accounted for more than 50 per cent of oral cancers and the oral cancer mortality-to-incidence (M:I) ratio was greatest in ACT and NSW and least in QLD and SA. From 1983 to 1996, the annual incidence of lip cancer increased while the M:I ratio of lip cancer decreased. The annual incidence of cervical cancer decreased whereas the annual incidence of intra-oral cancer remained constant. The M:I ratio of cervical cancer was consistently lower than the MA ratio of intra-oral cancer. Conclusions; Reducing exposure to environmental carcinogens, increasing public awareness and population screening may reduce the incidence and mortality of oral cancer in Australia.
Resumo:
Background Smoking is a risk factor for several diseases and has been increasing in many developing countries. Our aim was to estimate global and regional mortality in 2000 caused by smoking, including an analysis of uncertainty. Methods Following the methods of Peto and colleagues, we used lung-cancer mortality as an indirect marker for accumulated smoking risk. Never-smoker lung-cancer mortality was estimated based on the household use of coal with poor ventilation. Relative risks were taken from the American Cancer Society Cancer Prevention Study, phase II, and the retrospective proportional mortality analysis of Liu and colleagues in China. Relative risks were corrected for confounding and extrapolation to other regions. Results We estimated that in 2000, 4.83 (uncertainty range 3.94-5.93) million premature deaths in the world were attributable to smoking; 2.41 (1.80-3.15) million in developing countries and 2.43 (2.13-2.78) million in industrialised countries. 3.84 million of these deaths were in men. The leading causes of death from smoking were cardiovascular diseases (1.69 million deaths), chronic obstructive pulmonary disease (0.97 million deaths), and lung cancer (0.85 million deaths). Interpretation Smoking was an important cause of global mortality in 2000. In view of the expected demographic and epidemiological transitions and current smoking patterns in the developing world, the health loss due to smoking will grow even larger unless effective interventions and policies that reduce smoking among men and prevent increases among women in developing countries are implemented.
Resumo:
Background: Smoking has been causally associated with increased mortality from several diseases, and has increased considerably in many developing countries in the past few decades. Mortality attributable to smoking in the year 2000 was estimated for adult males and females, including estimates by age and for specific diseases in 14 epidemiological subregions of the world. Methods: Lung cancer mortality was used as an indirect marker of the accumulated hazard of smoking. Never-smoker lung cancer mortality was estimated based on the household use of coal with poor ventilation. Estimates of mortality caused by smoking were made for lung cancer, upper aerodigestive cancer, all other cancers, chronic obstructive pulmonary disease ( COPD), other respiratory diseases, cardiovascular diseases, and selected other medical causes. Estimates were limited to ages 30 years and above. Results: In 2000, an estimated 4.83 million premature deaths in the world were attributable to smoking, 2.41 million in developing countries and 2.43 million in industrialised countries. There were 3.84 million male deaths and 1.00 million female deaths attributable to smoking. 2.69 million smoking attributable deaths were between the ages of 30 - 69 years, and 2.14 million were 70 years of age and above. The leading causes of death from smoking in industrialised regions were cardiovascular diseases ( 1.02 million deaths), lung cancer (0.52 million deaths), and COPD (0.31 million deaths), and in the developing world cardiovascular diseases (0.67 million deaths), COPD (0.65 million deaths), and lung cancer (0.33 million deaths). The share of male and female deaths and younger and older adult deaths, and of various diseases in total smoking attributable deaths exhibited large inter-regional heterogeneity, especially in the developing world. Conclusions: Smoking was an important cause of global mortality in 2000, affecting a large number of diseases. Age, sex, and disease patterns of smoking-caused mortality varied greatly across regions, due to both historical and current smoking patterns, and the presence of other risk factors that affect background mortality from specific diseases.
Resumo:
Although smoking is widely recognized as a major cause of cancer, there is little information on how it contributes to the global and regional burden of cancers in combination with other risk factors that affect background cancer mortality patterns. We used data from the American Cancer Society's Cancer Prevention Study II (CPS-II) and the WHO and IARC cancer mortality databases to estimate deaths from 8 clusters of site-specific cancers caused by smoking, for 14 epidemiologic subregions of the world, by age and sex. We used lung cancer mortality as an indirect marker for accumulated smoking hazard. CPS-II hazards were adjusted for important covariates. In the year 2000, an estimated 1.42 (95% CI 1.27-1.57) million cancer deaths in the world, 21% of total global cancer deaths, were caused by smoking. Of these, 1.18 million deaths were among men and 0.24 million among women; 625,000 (95% CI 485,000-749,000) smoking-caused cancer deaths occurred in the developing world and 794,000 (95% CI 749,000-840,000) in industrialized regions. Lung cancer accounted for 60% of smoking-attributable cancer mortality, followed by cancers of the upper aerodigestive tract (20%). Based on available data, more than one in every 5 cancer deaths in the world in the year 2000 were caused by smoking, making it possibly the single largest preventable cause of cancer mortality. There was significant variability across regions in the role of smoking as a cause of the different site-specific cancers. This variability illustrates the importance of coupling research and surveillance of smoking with that for other risk factors for more effective cancer prevention. (C) 2005 Wiley-Liss, Inc.
Resumo:
Background - Smoking is a major cause of cardiovascular disease mortality. There is little information on how it contributes to global and regional cause-specific mortality from cardiovascular diseases for which background risk varies because of other risks. Method and Results - We used data from the American Cancer Society's Cancer Prevention Study II (CPS II) and the World Health Organization Global Burden of Disease mortality database to estimate smoking-attributable deaths from ischemic heart disease, cerebrovascular disease, and a cluster of other cardiovascular diseases for 14 epidemiological subregions of the world by age and sex. We used lung cancer mortality as an indirect marker for accumulated smoking hazard. CPS-II hazards were adjusted for important covariates. In the year 2000, an estimated 1.62 (95% CI, 1.27 to 2.04) million cardiovascular deaths in the world, 11% of total global cardiovascular deaths, were due to smoking. Of these, 1.17 million deaths were among men and 450 000 among women. There were 670 000 (95% CI, 440 000 to 920 000) smoking-attributable cardiovascular deaths in the developing world and 960 000 (95% CI, 770 000 to 1 200 000) in industrialized regions. Ischemic heart disease accounted for 54% of smoking-attributable cardiovascular mortality, followed by cerebrovascular disease (25%). There was variability across regions in the role of smoking as a cause of various cardiovascular diseases. Conclusions - More than 1 in every 10 cardiovascular deaths in the world in the year 2000 were attributable to smoking, demonstrating that it is an important preventable cause of cardiovascular mortality.
Resumo:
Background There are substantial social inequalities in adult male mortality in many countries. Smoking is often more prevalent among men of lower social class, education, or income. The contribution of smoking to these social inequalities in mortality remains uncertain. Methods The contribution of smoking to adult mortality in a population can be estimated indirectly from disease-specific death rates in that population (using absolute lung cancer rates to indicate proportions due to smoking of mortality from certain other diseases). We applied these methods to 1996 death rates at ages 35-69 years in men in three different social strata in four countries, based on a total of 0.6 million deaths. The highest and lowest social strata were based on social class (professional vs unskilled manual) in England and Wales, neighbourhood income (top vs bottom quintile) in urban Canada, and completed years of education (more than vs less than 12 years) in the USA and Poland. Results In each country, there was about a two-fold difference between the highest and the lowest social strata in overall risks of dying among men aged 35-69 years (England and Wales 21% vs 43%, USA 20% vs 37%, Canada 21% vs 34%, Poland 26% vs 50%: four-country mean 22% vs 41%, four-country mean absolute difference 19%). More than half of this difference in mortality between the top and bottom social strata involved differences in risks of being killed at age 35-69 years by smoking (England and Wales 4% vs 19%, USA 4% vs 15%, Canada 6% vs 13%, Poland 5% vs 22%: four-country mean 5% vs 17%, four-country mean absolute difference 12%). Smoking-attributed mortality accounted for nearly half of total male mortality in the lowest social stratum of each country. Conclusion In these populations, most, but not all, of the substantial social inequalities in adult male mortality during the 1990s were due to the effects of smoking. Widespread cessation of smoking could eventually halve the absolute differences between these social strata in the risk of premature death.
Resumo:
OBJECTIVE: To compare the accuracy, costs and utility of using the National Death Index (NDI) and state-based cancer registries in determining the mortality status of a cohort of women diagnosed with ovarian cancer in the early 1990s. METHODS: As part of a large prognostic study, identifying information on 822 women diagnosed with ovarian cancer between 1990 and 1993, was simultaneously submitted to the NDI and three state-based cancer registries to identify deceased women as of June 30, 1999. This was compared to the gold standard of "definite deaths". A comparative evaluation was also made of the time and costs associated with the two methods. RESULTS: Of the 450 definite deaths in our cohort the NDI correctly identified 417 and all of the 372 women known to be alive (sensitivity 93%, specificity 100%). Inconsistencies in identifiers recorded in our cohort files, particularly names, were responsible for the majority of known deaths not matching with the NDI, and if eliminated would increase the sensitivity to 98%. The cancer registries correctly identified 431 of the 450 definite deaths (sensitivity 96%). The costs associated with the NDI search were the same as the cancer registry searches, but the cancer registries took two months longer to conduct the searches. CONCLUSIONS AND IMPLICATIONS: This study indicates that the cancer registries are valuable, cost effective agencies for follow-up of mortality outcome in cancer cohorts, particularly where cohort members were residents of those states. For following large national cohorts the NDI provides additional information and flexibility when searching for deaths in Australia. This study also shows that women can be followed up for mortality with a high degree of accuracy using either service. Because each service makes a valuable contribution to the identification of deceased cancer subjects, both should be considered for optimal mortality follow-up in studies of cancer patients.
Resumo:
Objective-The purpose of mammographic screening is to reduce mortality from breast cancer. This study describes a method for projecting the number of screens to be performed by a mammographic screening programme, and applies this method in the context of New South Wales, Australia. Method-The total number of mammographic screens was projected as the sum of initial screens and re-screens, and is based on projections of the population, rates of new recruitment, rates of attrition within the programme, and the mix of screening intervals. The baseline scenario involved: 70% participation of women aged 50-69 years, 90% return rate for the second and subsequent re-screens, 5% annual screens (95% biennial screens), and a specified population projection. The results were assessed with respect to variations in these assumptions. Results-The projections were strongly influenced by: the rate of screening of the target age group; the proportion of women re-screened annually; and the rates of attrition within the programme. Although demographic change had a notable effect, there was little difference between different population projections. Standard assumptions about attrition within the programme suggest that the current target participation rates in NSW may not be achieved in the long term. Conclusions-A practical model for projecting mammographic screens for populations is described which is capable of forecasting the number of screens under different scenarios. Implications-Projections of mammographic screens provide important information for the planning and financing of equipment and personnel, and for testing the effects of variations in important operational parameters. Re-screening attrition is an important contributor to screening viability.
Resumo:
Two hazard risk assessment matrices for the ranking of occupational health risks are described. The qualitative matrix uses qualitative measures of probability and consequence to determine risk assessment codes for hazard-disease combinations. A walk-through survey of an underground metalliferous mine and concentrator is used to demonstrate how the qualitative matrix can be applied to determine priorities for the control of occupational health hazards. The semi-quantitative matrix uses attributable risk as a quantitative measure of probability and uses qualitative measures of consequence. A practical application of this matrix is the determination of occupational health priorities using existing epidemiological studies. Calculated attributable risks from epidemiological studies of hazard-disease combinations in mining and minerals processing are used as examples. These historic response data do not reflect the risks associated with current exposures. A method using current exposure data, known exposure-response relationships and the semi-quantitative matrix is proposed for more accurate and current risk rankings.