2 resultados para Callinectes

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed the impact of large-scale commercial and recreational harvesting of polychaete worms Marphysa spp. on macrobenthic assemblages in a subtropical estuary in Queensland, Australia, by examining: (1) the spatial extent of harvesting activities and the rate of recovery of the seagrass habitat over an 18 to 20 mo period; (2) the recovery of infauna in and around commercial pits of known age; (3) the indirect effects of physical disturbance from trampling and deposition of sediments during harvesting on epibenthos in areas adjacent to commercial and recreational pits; (4) impacts of potential indirect effects through manipulative experimentation. Harvesting caused a loss of seagrass, changes to the topography and compaction of the sediments associated with the creation of walls around commercial pits, and the deposition of rubble dug from within the pit. The walls and rubble were still evident after 1.8 to 20 mo, but comprised only a small proportion of the total area on the intertidal banks. There was a shift from an intertidal area dominated by Zostera capricorni to one with a mixture of Z. capricorni, Halophila spp. and Halodule uninervis, but there was no overall decline in the biomass of seagrass in these areas. There were distinct impacts from harvesting on the abundance of benthic infauna, especially amphipods, polychaetes and gastropods, and these effects were still detectable after 4 mo of potential recovery. After 12 me, there were no detectable differences in the abundances of these infauna between dug areas and reference areas, which suggested that infauna had recovered from impacts of harvesting; however, an extensive bloom of toxic fireweed Lyngbya majsucula may have masked any remaining impacts. There were no detectable impacts of harvesting on epifauna living in the seagrass immediately around commercial or recreational pits.