4 resultados para Calcium Permeability

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To simulate the process of calcification in hydrogel implants, particularly calcification inside hydrogels, in vitro experiments using two compartment permeation cells have been performed. PHEMA hydrogel membranes were synthesized by free radical polymerization in bulk. The permeability and diffusion coefficient for Ca2+ ions at 37 ° C were determined using Fick's laws of diffusion. It was evident that Ca2+ ions either from CaCl2 or SBF solutions may diffuse through PHEMA hydrogel membranes. The fort-nation of calcium phosphate deposits inside the hydrogel was observed and attributed to a heterogeneous nucleation from diffusing calcium and phosphate ions. The morphology of the deposits both on the surface and inside the hydrogels was found to be similar, i.e. spherical aggregates with a diameter of less than one micron. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+](i), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+](i) transients was 28 muM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. 3 In fura-2-loaded neurons, voltage clamped at -60mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 muM) simultaneously inhibited nAChR-induced increases in [Ca2+](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by - 40% at - 120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+](i) by similar to40%. 5 Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+](i), indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. 6 Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 muM), pentobarbital (50 muM) and ketamine (10 muM). 7 In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purpose: Voltage-dependent block by Mg2+ is a cardinal feature of NMDA receptors which acts as a coincidence detector to prevent the receptor from over-activation. Inhibition of NMDA receptor currents by 5-hydroxytryptamine (5-HT) indicated that 5-HT, similar to Mg2+, binds within the membrane electric field. In the present study, we assessed whether point mutations of critical asparagine residues located within the selectivity filter of NR1 and NR2A subunits of NMDA receptor-channel affect voltage-dependent block by 5-HT. Experimental approach: The mode of action of 5-HT and Mg2+ on wild-type and mutated NMDA receptor-channels expressed in Xenopus oocytes was investigated using the two-electrode voltage clamp recording technique. Key results: The mutation within the NR1 subunit NR1(N0S or N0Q) strongly reduced the voltage dependent block by 5-HT and increased the IC50. The corresponding mutations within the NR2 subunits NR2A(N0Q or N + 1Q) reduced the block by 5-HT to a lesser extent. This is in contrast to the block produced by external Mg2+ where a substitution at the NR2A(N0) and NR2A(N + 1) sites but not at the NR1(N0) site significantly reduced Mg2+ block. Conclusion and implications: The block of NMDA receptor-channels by 5-HT depends on the NR1-subunit asparagine residue and to a lesser extent on the NR2A-subunit asparagine residues. These data suggest that the interaction of 5-HT with functionally important residues in a narrow constriction of the pore of the NMDA receptor-channel provides a significant barrier to ionic fluxes through the open channel due to energetic factors governed by chemical properties of the binding site and the electric field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.