7 resultados para Caiua sandstone
em University of Queensland eSpace - Australia
Resumo:
Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.
Resumo:
Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.
Resumo:
Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R-2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.
Resumo:
Performance prediction models for partial face mechanical excavators, when developed in laboratory conditions, depend on relating the results of a set of rock property tests and indices to specific cutting energy (SE) for various rock types. There exist some studies in the literature aiming to correlate the geotechnical properties of intact rocks with the SE, especially for massive and widely jointed rock environments. However, those including direct and/or indirect measures of rock fracture parameters such as rock brittleness and fracture toughness, along with the other rock parameters expressing different aspects of rock behavior under drag tools (picks), are rather limited. With this study, it was aimed to investigate the relationships between the indirect measures of rock brittleness and fracture toughness and the SE depending on the results of a new and two previous linear rock cutting programmes. Relationships between the SE, rock strength parameters, and the rock index tests have also been investigated in this study. Sandstone samples taken from the different fields around Ankara, Turkey were used in the new testing programme. Detailed mineralogical analyses, petrographic studies, and rock mechanics and rock cutting tests were performed on these selected sandstone specimens. The assessment of rock cuttability was based on the SE. Three different brittleness indices (B1, B2, and B4) were calculated for sandstones samples, whereas a toughness index (T-i), being developed by Atkinson et al.(1), was employed to represent the indirect rock fracture toughness. The relationships between the SE and the large amounts of new data obtained from the mineralogical analyses, petrographic studies, rock mechanics, and linear rock cutting tests were evaluated by using bivariate correlation and curve fitting techniques, variance analysis, and Student's t-test. Rock cutting and rock property testing data that came from well-known studies of McFeat-Smith and Fowell(2) and Roxborough and Philips(3) have also been employed in statistical analyses together with the new data. Laboratory tests and subsequent analyses revealed that there were close correlations between the SE and B4 whereas no statistically significant correlation has been found between the SE and T-i. Uniaxial compressive and Brazilian tensile strengths and Shore scleroscope hardness of sandstones also exhibited strong relationships with the SE. NCB cone indenter test had the greatest influence on the SE among the other engineering properties of rocks, confirming the previous studies in rock cutting and mechanical excavation. Therefore, it was recommended to employ easy-to-use index tests of NCB cone indenter and Shore scleroscope in the estimation of laboratory SE of sandstones ranging from very low to high strengths in the absence of a rock cutting rig to measure it until the easy-to-use universal measures of the rock brittleness and especially the rock fracture toughness, being an intrinsic rock property, are developed.
Resumo:
The late Miocene Farallon Negro volcanics, comprising basaltic to rhyodacitic volcano-sedimentary rocks, host the Bajo de la Alumbrera porphyry copper-gold deposit in northwest Argentina. Early studies of the geology of the district have underpinned the general model for porphyry ore deposits where hydrothermal alteration and mineralization develop in and around porphyritic intrusions emplaced at shallow depths (2.5-3.5 km) into stratovolcanic assemblages. The Farallon Negro succession is dominated by thick sequences of volcano-sedimentary breccias, with lavas forming a minor component volumetrically. These volcaniclastic rocks conformably overlie crystalline basement-derived sedimentary rocks deposited in a developing foreland basin southeast of the Puna-Altiplano plateau. Within the Farallon Negro volcanics, volcanogenic accumulations evolved from early mafic to intermediate and silicic compositions. The younger and more silicic rocks are demonstrably coeval and comagmatic with the earliest group of mineralized porphyritic intrusions at Bajo de la Alumbrera. Our analysis of the volcanic stratigraphy and facies architecture of the Farallon Negro volcanics indicates that volcanic eruptions evolved from effusive to mixed effusive and explosive styles, as magma compositions changed to more intermediate and silicic compositions. Air early phase of mafic to intermediate voleanism was characterized by small synsedimentary intrusions with peperitic contacts, and lesser lava units scattered widely throughout the district, and interbedded with thick and extensive successions of coarse-grained sedimentary breccias. These sedimentary breccias formed from numerous debris- and hyperconcentrated flow events. A later phase of silicic volcanism included both effusive eruptions, forming several areally restricted lavas, and explosive eruptions, producing more widely dispersed (up to 5 kin) tuff units, some tip to 30-m thickness in proximal sections. Four key features of the volcanic stratigraphy suggest that the Farallon Negro volcanics need not simply record the construction of a large steep-sided polygenetic stratovolcano: (1) sheetlike, laterally continuous debris-flow and other coarse-grained sedimentary deposits are dominant, particularly in the lower sections; (2) mafic-intermediate composition lavas are volumetrically minor; (3) peperites are present throughout the sequence; and (4) fine-grained lacustrine sandstone-siltstone sequences occur in areas previously thought to be proximal to the summit region of the stratovolcano. Instead, the nature, distribution, and geometry of volcanic and volcaniclastic facies suggest that volcanism occurred as a relatively low relief, multiple-vent volcanic complex at the eastern edge of a broad, > 200-km-wide late Miocene volcanic belt and oil ail active foreland sedimentary basin to the Puna-Altiplano. Volcanism that occurred synchronously with the earliest stages of porphyry-related mineralization at Bajo de la Alumbrera apparently developed in an alluvial to ring plain setting that was distal to larger volcanic edifices.
Resumo:
An historical review of the literature relating to placoderm scales preserved in association with articulated dermal plates, or as isolated units in microvertebrate assemblages, is followed by a discussion of their relevance in phylogenetic analyses of the Placodermi. The dentinous tissue forming the tubercles of Early Devonian acanthothoracid scales and dermal bone is similar to that of the dermal bone ornament of some osteostracans, and denticles of the vertebrate Skiichthys from the Ordovician Harding Sandstone. This similarity supports the proposition that the gnathostomes are the sister-group of the Osteostraci, with the Placodermi branching earliest within the gnathostomes, and the Acanthothoraci branching earliest within the Placodermi. The meso-semidentine in acanthothoracid tubercles, rather than semidentine (sensu stricto), is most likely to be synapomorphic for the Placodermi.