69 resultados para Cage fish farming
em University of Queensland eSpace - Australia
Resumo:
Farming yellowtail in Japan is big business and cultivation of the closely related kingfish in South Australia is rapidly emerging as a local industry. But when it comes to parasites, farming the sea is no different from farming on land. Parasites can affect productivity, and solving parasite problems is important in this rapidly growing industry.
Resumo:
Anderson theorizes that development of the aquaculture of a species of fish (also captured in an open-access fishery) favours the conservation of its wild stocks, if competitive market conditions prevail. However, this theory is shown to be subject to significant limitations. While this is less so within his model, it is particularly so in an extended one outlined here. The extended model allows for the possibility that aquaculture development can impact negatively on wild stocks thereby shifting the supply curve of the capture fishery, or raise the demand for the fish species subject both to aquaculture and capture. Such development can threaten wild stocks and their biodiversity. While aquaculture development could in principle have no impact on the biodiversity of wild stocks or even raise aquatic biodiversity overall, its impact in the long-term probably will be one of reducing aquatic diversity both in the wild and overall.
Resumo:
Anderson theorizes that development of the aquaculture of a fish species (also captured in an open-access fishery) favours the conservation of its wild stocks, if competitive market conditions prevail. However, his theory is subject to significant limitations. While this is less so within his model, it is particularly so in an extended one outlined here. These other models allow for the possibility that aquaculture development can impact negatively on wild stocks thereby shifting the supply curve of the capture fishery, or raise the demand for the fish species subject both to aquaculture and capture. Such development can threaten wild fish stocks and their biodiversity. While aquaculture development could in principle have no impact on the biodiversity of wild stocks or even raise aquatic biodiversity overall, its impact in the long-term probably will be one of reducing aquatic diversity both in the wild and overall. The development of aquaculture does not automatically ensure long-term sustainability of fish and other aquatic supplies.
Resumo:
Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.
Resumo:
When English-learning children begin using words the majority of their early utterances (around 80%) are nouns. Compared to nouns, there is a paucity of verbs or non-verb relational words, such as 'up' meaning 'pick me up'. The primary explanations to account for these differences in use either argue in support of a 'cognitive account', which claims that verbs entail more cognitive complexity than nouns, or they provide evidence challenging this account. In this paper I propose an additional explanation for children's noun/verb asymmetry. Presenting a 'multi-modal account' of word-learning based on children's gesture and word combinations, I show that at the one-word stage English-learning children use gestures to express verb-like elements which leaves their words free to express noun-like elements.
Resumo:
The farming of channel catfish (Ictalurus punctatus) is the largest (by volume and value) and most successful (in terms of market impact) aquaculture industry in the United States of America. Farmed channel catfish is the most consumed (in terms of volume per capita) fish fillet in the U.S. market. Within Australia, it has long been suggested by researchers and industry that silver perch (Bidyanus bidyanus) and possibly other endemic teraponid species possess similar biological attributes for aquaculture as channel catfish and may have the potential to generate a similar industry. The current teraponid industry in Australia, however, shows very little resemblance to the catfish industry, either in production style or market philosophy. A well established budget framework from the literature on U.S. channel catfish farming has been adapted for cost and climate conditions of the Burdekin region, Queensland, Australia. Breakeven prices for the hypothetical teraponid farms were found to be up to 50% higher than those published for catfish farms however were much lower than those reported for silver perch production in Australia using current, endemic styles of production. The breakeven prices for the hypothetical teraponid farms were most sensitive (in order of significance) to feed prices, production rates, interest rates, fingerling prices and electricity prices. At equivalent feed costs the costs of production between the hypothetical catfish farms in the Mississippi, U.S. and the hypothetical teraponid farms in the Burdekin, Australia were remarkably similar. The cost of feeds suitable for teraponid production in Australia are currently around double that of catfish feeds in the U.S. Issues currently hindering the development of a large scale teraponid industry in Australia are discussed.
Resumo:
Large-scale patterns of species diversity in the gastrointestinal helminth faunas of the coral reef fish Epinephelus merra (Serranidae) were investigated in French Polynesia and the South Pacific Ocean. The richer barrier reef community in French Polynesia supported richer parasite communities in E. merra than that on the fringing reef. While parasite communities among fish from the same archipelago were similar, differences in potential host species and the distance between archipelagos may have contributed to a qualitative difference in parasite communities between archipelagos. Digenean community diversity in coral reef fishes was greater in the western South Pacific, following similar patterns in free-living species. However, overall species diversity of camallanid nematodes of coral reef fishes does not appear to have been similarly affected.
Resumo:
Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.
Resumo:
1, Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3, In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degrees C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N, coriiceps at 0 degrees C, 4, It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish, Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Two previous papers in this series (Nelson et al., this issue) described the use of the Agricultural Production Systems Simulator (APSIM) to simulate the effect of erosion on maize yields from open-field farming and hedgerow intercropping in the Philippine uplands. In this paper, maize yields simulated with APSIM are used to compare the economic viability of intercropping maize between leguminous shrub hedgerows with that of continuous and fallow open-field farming of maize. The analysis focuses on the economic incentives of upland farmers to adopt hedgerow intercropping, discussing farmers' planning horizons, access to credit and security of land tenure, as well as maize pricing in the Philippines. Insecure land tenure has limited the planning horizons of upland farmers, and high establishment costs reduce the economic viability of hedgerow intercropping relative to continuous and fallow open-field farming in the short term, In the long term, high discount rates and share-tenancy arrangements in which landlords do not contribute to establishment costs reduce the economic viability of hedgerow intercropping relative to fallow open-field farming, (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A system of secondary vessels emerging from the primary vessels as numerous coiled capillaries has been described in numerous teleost and holost fishes. The systemic secondary vessels of the teleost Tandanus tandanus are typical of this system and are described in this study. The existence of a secondary vessel system has been postulated in the elasmobranch group. No secondary vessel origins, as seen in the teleosts, are present in the elasmobranchs Rhinobatos typus and Carcharhinus melanopterus. Vessels with a similar distribution to secondary arteries are observed but these are venous rather than arterial in nature and do not connect with the primary arteries. Like the secondary veins in teleosts, the cutaneous veins in R. typus contain blood with a low haematocrit. There is no morphological evidence for a secondary vessel system in the dipnoan Neoceratodus forsteri.