73 resultados para CYCLIC VOLTAMMETRY EXPERIMENTS
em University of Queensland eSpace - Australia
Resumo:
The Co-III complexes of the hexadentate tripodal ligands HOsen (3-(2'-aminoethylamino)-2,2-bis((2 ''-aminoethylamino) methyl) propan-1-ol) and HOten (3-(2'-aminoethylthia)-2,2-bis((2 ''-aminoethylthia) methyl) propan-1-ol) have been synthesized and fully characterized. The crystal structures of [Co(HOsen)]Cl-3 center dot H2O and [Co(HOten)](ClO4)Cl-2 are reported and in both cases the ligands coordinate as tripodal hexadentate N-6 and N3S3 donors, respectively. Cyclic voltammetry of the N3S3 coordinated complex [Co(HOten)](3+) is complicated and electrode dependent. On a Pt working electrode an irreversible Co-III/II couple ( formal potential - 157 mV versus Ag-AgCl) is seen, which is indicative of dissociation of the divalent complex formed at the electrode. The free HOten released by the dissociation of [Co(HOten)](2+) can be recaptured by Hg as shown by cyclic voltammetry experiments on a static Hg drop electrode ( or in the presence of Hg2+ ions), which leads to the formation of an electroactive Hg-II complex of the N3S3 ligand (formal potential + 60 mV versus Ag-AgCl). This behaviour is in contrast to the facile and totally reversible voltammetry of the hexaamine complex [Co(HOsen)](3+) ( formal potential (Co-III/II) - 519 mV versus Ag-AgCl), which is uncomplicated by any coupled chemical reactions. Akinetic and thermodynamic analysis of the [Co(HOten)](2+)/[Hg(HOten)](2+) system is presented on the basis of digital simulation of the experimental voltammetric data.
Resumo:
A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.
Resumo:
Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.
Resumo:
The 4-carboxyphenyl-appended macrocyclic ligand trans-6,13-dimethyl-6-((4-carboxybenzyl)amino)-1,4,8,11-tetraazacyclotetradecane-6-amine (HL10) has been synthesised and complexed with Co-III. The mononuclear complexes [Co(HL10)(CN)](2+) and [CoL10(OH)](+) have been prepared and the crystal structures of their perchlorate salts are presented, where the ligand is bound in a pentadentate mode in each case while the 4-carboxybenzyl-substituted pendent amine remains free from the metal. The cyano-bridged dinuclear complex [CoL10-mu-NC-Fe(CN)(5)](2-) was also prepared and chemisorbed on titania-coated ITO conducting glass. The adsorbed complex is electrochemically active and cyclic voltammetry of the modified ITO working electrode in both water and MeCN solution was undertaken with simultaneous optical spectroscopy. This experiment demonstrates that reversible electrochemical oxidation of the Fe-II centre is coupled with rapid changes in the optical absorbance of the film.
Resumo:
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The isolation and characterisation of a new macrocyclic hexaamine trans-6,13-bis(ferrocenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane (L-2) bearing two ferrocenyl groups appended to its exocyclic amines is reported. The crystal structures of L-2 and its dihydrochloride salt L-2. 2HCl . 2H(2)O have been determined. In the latter case cation-anion hydrogen bonding is observed in the solid state. Substrate binding by the electroactive L-2 in MeCN-CH2Cl2 solution has been examined by cyclic voltammetry and reveals the receptor electrochemically to recognise benzoate and chloride anions. The macrocyclic N-donors may also bind transition metal cations such as Cu-II and Zn-II.
Resumo:
The first direct voltammetric response from a molybdenum enzyme under non-turnover conditions is reported. Cyclic voltammetry of dimethylsulfoxide reductase from Rhodobacter capsulatus reveals a reversible Mo-VI/V response at + 161 mV followed by a reversible Mo-V/IV response at -102 mV versus NHE at pH 8. The higher potential couple exhibits a pH dependence consistent with protonation upon reduction to the Mo-V state and we have determined the pK(a) for this semi-reduced species to be 9.0. The lower potential couple is pH independent within the range 5 < pH < 10. The optical spectrum of the Mo chromophore has been investigated with spectroelectrochemistry. At high potential, in its resting state, the enzyme exhibits a spectrum characteristic of the Mo-VI form. This changes significantly following bulk electrolysis (-400 mV versus NHE) at an optically transparent, indium-doped tin oxide working electrode, where a single visible electronic maximum at 632 nm is observed, which is comparable with spectra reported previously for the dithionite-reduced enzyme. This two-electron process is chemically reversible by reoxidizing the enzyme at the electrode in the absence of mediators or promoters. The activity of the enzyme has been established by observation of a catalytic current in the presence of DMSO at pH 8, where a sigmoidal (steady state) voltammogram is seen. Electronic supplementary material to this paper (Fig. S 1) can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-002-0374-y.
Resumo:
This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.
Resumo:
The synthesis of the hexadentate ligand 5,6-dimethyl-2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (1,2-Me(2)EtN(4)S(2)amp) is reported. The diastereiosomers were separated as cobalt(III) complexes using cation exchange chromatography. The rac and mesa isomers were characterized by NMR (C-13, H-1, Co-59), ESI-MS, UV-Vis spectroscopy and cyclic voltammetry. Single crystals of [Co(rac-1,2-Me(2)EtN(4)S(2)amp)] Cl-2(ClO4) (.) 2H(2)O were characterized by X-ray diffraction. The low-temperature (11 K) absorption spectra of the complexes have been measured in Nafion films and from the observed positions of both spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(2g) bands, octahedral ligand-field parameters (10Dq, B and C) were determined. These results, in conjunction with the Co-59 NMR data, are used to further explore the relationship between the Co-59 magnetogyric ratio (gamma(Co)) and the product of the nephelauxetic ratio and the wavelength of the (1)A(1g) --> T-1(1g) transition (beta(DeltaE)(-1)) for complexes of mixed donor nitrogen-thioether ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The 2-pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) family of ligands are typically tridentate N,N,O chelators that exhibit very high in vitro activity in mobilizing intracellular Fe and are promising candidates for the treatment of Fe overload diseases. Complexation of ferrous perchlorate with HPCIH in MeCN solution gives the expected six-coordinate complex Fe-II(PCIH)(2). However, complexation of Fe-II with 2-pyridinecarbaldehyde picolinoyl hydrazone (HPCPH, an isomer of HPCIH) under the same conditions leads to spontaneous assembly of an unprecedented asymmetric, mixed-ligand dinuclear triple helical complex Fe-2(II)(PCPH)(2)(PPH), where PPH2- is the dianion of bis(picolinoyl) hydrazine. The X-ray crystal structure of this complex shows that each ligand binds simultaneously to both metal centres in a bidentate fashion. The dinuclear complex exhibits two well separated and totally reversible Fe-III/II redox couples as shown by cyclic voltammetry in MeCN solution.
Resumo:
Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (Fe-III-Fe-II --> Fe-III-Fe-III) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Uf(o)) have been determined. The effect of pH on the redox potentials has been investigated in the range 3 < pH < 6.5, enabling acid dissociation constants for Uf(o) and its phosphate and arsenate complexes to be calculated.
Resumo:
Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work, nanoporous nickel oxide was synthesized using anionic surfactant assembly method. Structure characterizations show that this nickel oxide possesses partly-ordered mesoporous structure with nanocrystalline pore wall. The formation mechanism of wormlike nanoporous structure is ascribed to the quasi-reverse micelle system formed by ternary phases of SDS (sodium dodecyl sulfate)/urea/water. Cyclic voltammetry shows that these nickel oxide samples possess both good capacitive behavior due to its unique nanoporous structure and very high specific capacitance due to its high surface area with electrochemical activity.
Resumo:
Ordered mesoporous carbon CMK-5 was comprehensively tested for the first time as electrode materials in lithium ion battery. The surface morphology, pore structure and crystal structure were investigated by Scanning Electronic Microscopy (SEM), N-2 adsorption technique and X-ray diffraction (XRD) respectively. Electrochemical properties of CMK-5 were studied by galvanostatic cycling and cyclic voltammetry, and compared with conventional anode material graphite. Results showed that the reversible capacity of CMK-5 was 525 mAh/g at the third charge-discharge cycle and that CMK-5 was more compatible for quick charge-discharge cycling because of its special mesoporous structure. Of special interest was that the CMK-5 gave no peak on its positive sweep of the cyclic voltammetry, which was different from all the other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also applied to investigate the charge-discharge characteristics of CMK-5.
Resumo:
Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.