7 resultados para CURED RESIN CEMENT
em University of Queensland eSpace - Australia
Resumo:
Objectives. This study examined the depth of cure and surface microhardness of Filtek Z250 composite resin (3M-Espe) (shades B1, A3, and C4) when cured with three commercially available tight emitting diode (LED) curing lights [E-light (GC), Elipar Freelight (3M-ESPE), 475H (RF Lab Systems)], compared with a high intensity quartz tungsten halogen (HQTH) light (Kerr Demetron Optilux 501) and a conventional quartz tungsten halogen (QTH) lamp (Sirona S1 dental unit). Methods. The effects of light source and resin shade were evaluated as independent variables. Depth of cure after 40 s of exposure was determined using the ISO 4049:2000 method, and Vickers hardness determined at 1.0 mm intervals. Results. HQTH and QTH lamps gave the greatest depth of cure. The three LED lights showed similar performances across all parameters, and each unit exceeded the ISO standard for depth of cure except GC ELight for shade B1. In terms of shade, LED lights gave greater curing depths with A3 shade, while QTH and HQTH tights gave greater curing depths with C4 shade. Hardness at the resin surface was not significantly different between LED and conventional curing lights, however, below the surface, hardness reduced more rapidly for the LED lights, especially at depths beyond 3 mm. Significance. Since the performance of the three LED lights meets the ISO standard for depth of cure, these systems appear suitable for routine clinical application for resin curing. (C) 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The influence of an organically modified clay on the curing behavior of three epoxy systems widely used in the aerospace industry and of different structures and functionalities, was studied. Diglycidyl ether of bisphenol A (DGEBA), triglycidyl p-amino phenol (TGAP) and tetraglycidyl diamino diphenylmethane (TGDDM) were mixed with an octadecyl ammonium ion modified organoclay and cured with diethyltoluene diamine (DETDA). The techniques of dynamic mechanical thermal analysis (DMTA), chemorheology and differential scanning calorimetry (DSC) were applied to investigate gelation and vitrification behavior, as well as catalytic effects of the clay on resin cure. While the formation of layered silicate nanocomposite based on the bifunctional DGEBA resin has been previously investigated to some extent, this paper represents the first detailed study of the cure behavior of different high performance, epoxy nanocomposite systems.
Resumo:
Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.
Distribution of melamine in polyester-melamine surface coatings cured under nonisothermal conditions
Resumo:
The influence of experimental cure parameters on the diffusion of reactive species in polyester-melamine thermoset coatings during curing has been investigated with X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (
Resumo:
This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl-functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4'-diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM-cured epoxy/HBP blends with HBP content up to 40 wt% were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy-rich phase and an HBP-rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt%, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt% HBP exhibits a combined morphology of connected globules and bicominuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100-300 nm were formed after the HBP-rich phase was extracted with solvent from the cured blend with 40 wt% HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. (c) 2006 Wiley Periodicals, Inc.