130 resultados para CRYSTALLOGRAPHIC CHARACTERIZATION
em University of Queensland eSpace - Australia
Resumo:
Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3' nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds.
Resumo:
In this paper, we propose a new nonlocal density functional theory characterization procedure, the finite wall thickness model, for nanoporous carbons, whereby heterogeneity of pore size and pore walls in the carbon is probed simultaneously. We determine the pore size distributions and pore wall thickness distributions of several commercial activated carbons and coal chars, with good correspondence with X-ray diffraction. It is shown that the conventional infinite wall thickness approach overestimates the pore size slightly. Pore-pore correlation has been shown to have a negligible effect on prediction of pore size and pore wall thickness distributions for small molecules such as argon used in characterization. By utilizing the structural parameters (pore size and pore wall thickness distribution) in the generalized adsorption isotherm (GAI) we are able to predict adsorption uptake of supercritical gases in BPL and Norit RI Extra carbons, in excellent agreement with experimental adsorption uptake data up to 60 MPa. The method offers a useful technique for probing features of the solid skeleton, hitherto studied by crystallographic methods.
Resumo:
Proteins containing the classical nuclear localization sequences (NLSs) are imported into the nucleus by the importin-alpha/beta heterodimer. Importin-alpha contains the NLS binding site, whereas importin-beta mediates the translocation through the nuclear pore. We characterized the interactions involving importin-alpha during nuclear import using a combination of biophysical techniques (biosensor, crystallography, sedimentation equilibrium, electrophoresis, and circular dichroism). Importin-alpha is shown to exist in a monomeric autoinhibited state (association with NLSs undetectable by biosensor). Association with importin-beta (stoichiometry, 1:1; K-D = 1.1 x 10(-8) m) increases the affinity for NLSs; the importin-alpha/beta complex binds representative monopartite NLS (simian virus 40 large T-antigen) and bipartite NLS (nucleoplasmin) with affinities (K-D = 3.5 x 10(-8) m and 4.8 x 10(-8) m, respectively) comparable with those of a truncated importin-alpha lacking the autoinhibitory domain (T-antigen NLS, K-D = 1.7 x 10(-8) m; nucleoplasmin NLS, K-D = 1.4 x 10(-8) m). The autoinhibitory domain (as a separate peptide) binds the truncated importin-alpha, and the crystal structure of the complex resembles the structure of full-length importin-alpha. Our results support the model of regulation of nuclear import mediated by the intrasteric autoregulatory sequence of importin-alpha and provide a quantitative description of the binding and regulatory steps during nuclear import.
Resumo:
New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing alpha,alpha-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)](2) (ONNO2- = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)](2), but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis. (c) 2005 Published by Elsevier B.V.
Resumo:
The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.
Resumo:
Turbulent free jets issuing from rectangular slots with various high aspect ratios (15-120) are characterized. The centerline mean and rms velocities are measured using hot-wire anemometry over a downstream distance of up to 160 slot heights at a slot-height-based Reynolds number of 10000. Experimental results suggest that a rectangular jet with sufficiently high aspect ratio (> 15) may be distinguished between three flow zones: an initial quasi-plane-jet zone, a transition zone, and a final quasi-axisymmetric-jet zone. In the quasi-plane-jet zone, the turbulent velocity field is statistically similar, but not identical, to those of a plane jet. (c) 2005 American Institute of Physics.
Resumo:
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.
Resumo:
Although Porphyromonas gingivalis is a defined pathogen in periodontal disease, many subjects control the infection without experiencing loss of attachment. Differences in host susceptibility to the disease may be reflected in the pattern of humoral antibodies against specific P. gingivalis antigens. The aim of this study was to determine the presence of antibodies against immunodominant P. gingivalis antigens as well as the isotype and subclass of anti-P. gingivalis antibodies against outer membrane antigens in four groups of patients: P. gingivalis-positive, 1) with and 2) without periodontitis, and P. gingivalis-negative, 3) with and 4) without periodontitis. Antigens of molecular weight 92, 63, and 32 kDa and lipopolysaccharide were found to be immunodominant. Group 1 subjects showed a significantly higher response to the 92 and 63 kDa antigens compared with other groups. The response to lipopolysaccharide was significantly higher in group 1, and lower in group 4 than in groups 2, 3. Immunoglobulin G(1) (IgG(1)), IgG(2) and IgM antibodies against P. gingivalis outer membrane were present in all subjects, while only some subjects were seropositive for IgG(3), IgG(4) and IgA. There were no differences in concentrations for IgG(1), IgG(3) and IgM. The IgG(2) concentration in group 4 was significantly higher than in groups 1 and 2, while the IgG(4) concentration in group 4 was significantly lower than in other groups. The frequency of seropositivity for IgG(4) and IgA was lowest in group 4, while IgG; seropositivity was almost exclusively seen in healthy patients iii groups 2, 4. These findings suggest that the presence of IgG(3) may reflect non-susceptibility to the disease, while lack of IgG(4) may be indicative of periodontal health and lack of infection.
Resumo:
The morphological and functional characteristics of stingray liver were studied, including the effect of ischaemia/reperfusion. With an isolated perfused model, it was shown that the stingray liver was more resistant than the rat liver to ischaemia/reperfusion injury; this was consistent with the differing partial oxygen tensions usually present in the two species. This study confirmed that whereas stingray hepatocytes form tubules with central bile canaliculi as in other fish, the stingray liver has portal triads and a lobular architecture as in mammals. Apoptosis of hepatocytes, demonstrated in the normal liver, was only marginally enhanced by ischaemia/reperfusion. Resulting apoptotic bodies were phagocytized by macrophage-like cells in hepatocyte tubules. In contrast to rat liver, the stingray liver showed no necrosis after ischaemia-reperfusion. (C) 1998 W.B. Saunders Company Limited.
Resumo:
Intracellular amastigotes of the protozoan parasite Leishmania mexicana secrete a macromolecular proteophosphoglycan (aPPG) into the phagolysosome of their host cell, the mammalian macrophage. The structures of aPPG glycans were analyzed by a combination of high pH anion exchange high pressure liquid chromatography, gas chromatography-mass spectrometry, enzymatic digestions, electrospray-mass spectrometry as well as H-1 and P-31 NMR spectroscopy. Some glycans are identical to oligosaccharides known from Leishmania mexicana promastigote lipophosphoglycan and secreted acid phosphatase, However, the majority of the aPPG glycans represent amastigote stage-specific and novel structures. These include neutral glycans ([Glc beta(1-3)](1-2)Gal beta 1-4Man, Gal beta 1-3Gal beta 1-4Man, Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), several monophosphorylated glycans containing the conserved phosphodisaccharide backbone (R-3-[PO4-6-Gal]beta 1-4Man) but carrying stage-specific modifications (R = Gal beta 1-, [Glc beta 1-3](1-2)Glc beta 1-), and monophosphorylated aPPG tri- and tetrasaccharides that are uniquely phosphorylated on the terminal hexose (PO4-6-Glc beta 1-3Gal beta 1-4Man, PO4-6-Glc beta 1-3Glc beta 1-3Gal beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), In addition aPPG contains highly unusual di- and triphosphorylated glycans whose major species are PO4-6-Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3 [PO4-6-Gal]beta 1-4Man, PO4-6-GaL beta 1-3Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6Gal beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, and PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man. These glycans are linked together by the conserved phosphodiester R-Man alpha 1-PO4-6-Gal-R or the novel phosphodiester R-Man alpha 1-PO4-6-Glc-R and are connected to Ser(P) of the protein backbone most likely via the linkage R-Man alpha 1-PO4-Ser. The variety of stage-specific glycan structures in Leishmania mexicana aPPG suggests the presence of developmentally regulated amastigote glycosyltransferases which may be potential anti-parasite drug targets.
Resumo:
Naturally occurring clays and pillared clays are used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of the supports and catalysts are systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD) techniques. It is found that the pore structures and surface properties of supports greatly affect the catalytic activities of the catalysts prepared. The catalysts supported on the mesoporous clays or pillared clays are obviously superior to those on microporous supports because the mesoporous supports are highly thermal stable compared to the microporous ones. It is found that introducing lanthanum to the supports can improve the catalyst basicity and thus enhance the catalytic activities of these catalysts. Deactivation of catalysts prepared and factors influencing their stability are also discussed. (C) 1998 Academic Press.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.