10 resultados para CROSS FLOW HEAT EXCHANGERS
em University of Queensland eSpace - Australia
Resumo:
In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fouling is the deposition of milk solids on heat transfer sur aces, particularly heat exchangers. It is a major industrial problem, which causes a decrease in heat transfer efficiency and shortens run times. The resultant effect is a decrease in process efficiency and economy. For studying and monitoring deposit formation, suitable fouling detectors or methods of measuring the deposit are required. This can be achieved through direct means, whereby the deposit is analyzed after a certain time, or indirectly through instrumentation for monitoring parameters such as temperature, pressure, flow rate, overall heat transfer coefficient, heat flux, and other physical properties. This article reviews the various reported fouling detection methods.
Resumo:
A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Computational fluid dynamics was used to search for the links between the observed pattern of attack seen in a bauxite refinery's heat exchanger headers and the hydrodynamics inside the header. Validation of the computational fluid dynamics results was done by comparing then with flow parameters measured in a 1:5 scale model of the first pass header in the laboratory. Computational fluid dynamics simulations were used to establish hydrodynamic similarity between the 1:5 scale and full scale models of the first pass header. It was found that the erosion-corrosion damage seen at the tubesheet of the first pass header was a consequence of increased levels of turbulence at the tubesheet caused by a rapidly turning flow. A prismatic flow corrections device introduced in the past helped in rectifying the problem at the tubesheet but exaggerated the erosion-corrosion problem at the first pass header shell. A number of alternative flow correction devices were tested using computational fluid dynamics. Axial ribbing in the first pass header and an inlet flow diffuser have shown the best performance and were recommended for implementation. Computational fluid dynamics simulations have revealed a smooth orderly low turbulence flow pattern in the second, third and fourth pass as well as the exit headers where no erosion-corrosion was seen in practice. This study has confirmed that near-wall turbulence intensity, which can be successfully predicted by using computational fluid dynamics, is a good hydrodynamic predictor of erosion-corrosion damage in complex geometries. (c) 2006 Published by Elsevier Ltd.
Resumo:
The development of solutions that prevent dehydration or promote adequate re-hydration play a vital role in preventing fatigue during exercise, however, the methods commonly used to assess the hydration ability of such solutions are invasive and often assess the components of absorption separately. This paper describes using a non-invasive deuterium tracer technique that assesses gastric emptying and intestinal absorption simultaneously to evaluate the uptake of water during rest and exercise. The kinetics of absorption are further examined by mathematical modelling of the data generated. For the rest group, 0.05 g/kg of body weight of deuterium, contained in gelatine capsules, was ingested with ordinary tap water and saliva samples were collected every 5 min for one hour while the subject remained seated. The deuterium was administered as above for the exercise group but sample collection was during one hour of exercise on a treadmill at 55% of the subject's maximum heart rate. The enrichment data for each subject were mathematically modelled and the parameters obtained were compared across groups using an independent samples t-test. Compared with the rest condition, the exercise group showed delayed absorption of water as indicated by significant differences for the modelling parameters t(2), t(1/2), maximum absorption rate and solution absorption amount at t(1). Labelling with a deuterium tracer is a good measure of the relative rate ingested fluids are absorbed by the body. Mathematical modelling of the data generates rates of maximum absorption and allows calculation of the percentage of the solution that is absorbed at any given time during the testing period. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
A recently developed whole of surface electroplating technique was used to obtain mass-transfer rates in the separated flow region of a stepped rotating cylinder electrode. These data are compared with previously reported mass-transfer rates obtained with a patch electrode. It was found that the two methods yield different results, where at lower Reynolds numbers, the mass-transfer rate enhancement was noticeably higher for the whole of the surface electrode than for the patch electrode. The location of the peak mass transfer behind the step, as measured with a patch electrode, was reported to be independent of the Reynolds number in previous studies, whereas the whole of the surface electrode shows a definite Reynolds number dependence. Large eddy simulation results for the recirculating region behind a step are used in this work to show that this difference in behavior is related to the existence of a much thinner fluid layer at the wall for which the velocity is a linear junction of distance from the wall. Consequently, the diffusion layer no longer lies well within a laminar sublayer. It is concluded that the patch electrode responds to the wall shear stress for smooth wall flow as well as for the disturbed flow region behind the step. When the whole of the surface is electro-active, the response is to mass transfer even when this is not a sole function of wall shear stress. The results demonstrate that the choice of the mass-transfer measurement technique in corrosion studies can have a significant effect on the results obtained from empirical data.
Resumo:
When a gas is introduced at high velocity through a nozzle into a packed bed, it creates a raceway in the packed bed. It has been found that the raceway size is larger when it is formed by decreasing the gas velocity from its highest value than when it is formed by increasing the gas velocity. This phenomenon is known as raceway hysteresis. A hypothesis has been oroposed to explain the hysteresis phenomenon based on a force-balance approach which includes frictional, bed-weight, and pressure forces. According to this hypothesis, the frictional force acts in different directions when the raceway is expanding and contracting. In this article, the entire packed bed has been divided into radial and Cartesian co-ordinate systems, and the forces acting on the raceway have been solved analytically for a simplified one-dimensional case. Based on the force-balance approach, a general equation has been obtained to predict the diameter of the raceway for increasing And decreasing velocities. A reasonable agreement has been found between the theoretical predictions and experimental observations. The model has also been compared with published experimental and plant data. The hysteresis mechanism in the packed beds can be described reasonably by taking into consideration the direction of frictional forces for the increasing- and decreasin-velocity cases. The effects of the particleshape factor and void fraction on the raceway hysteresis are examined.
Resumo:
Polymeric microdrops of low viscosity, elastic fluids have been generated in T-shaped microfluidic devices using a cross-flow shear-induced drop generation process. Dilute (c/c* similar to 0.5) aqueous solutions of polyethylene oxide (PEO) of various molecular weights (3 x 10(5) -2 x 10(6) g/mol) were used as the drop phase fluids whilst silicone oils (5 mPa s
Resumo:
Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.