6 resultados para CONVENTIONAL THEORY

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: In the context of the established finding that theory-of-mind (ToM) growth is seriously delayed in late-signing deaf children, and some evidence of equivalent delays in those learning speech with conventional hearing aids, this study's novel contribution was to explore ToM development in deaf children with cochlear implants. Implants can substantially boost auditory acuity and rates of language growth. Despite the implant, there are often problems socialising with hearing peers and some language difficulties, lending special theoretical interest to the present comparative design. Methods: A total of 52 children aged 4 to 12 years took a battery of false belief tests of ToM. There were 26 oral deaf children, half with implants and half with hearing aids, evenly divided between oral-only versus sign-plus-oral schools. Comparison groups of age-matched high-functioning children with autism and younger hearing children were also included. Results: No significant ToM differences emerged between deaf children with implants and those with hearing aids, nor between those in oral-only versus sign-plus-oral schools. Nor did the deaf children perform any better on the ToM tasks than their age peers with autism. Hearing preschoolers scored significantly higher than all other groups. For the deaf and the autistic children, as well as the preschoolers, rate of language development and verbal maturity significantly predicted variability in ToM, over and above chronological age. Conclusions: The finding that deaf children with cochlear implants are as delayed in ToM development as children with autism and their deaf peers with hearing aids or late sign language highlights the likely significance of peer interaction and early fluent communication with peers and family, whether in sign or in speech, in order to optimally facilitate the growth of social cognition and language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we applied a version of the nonlocal density functional theory (NLDFT) accounting radial and longitudinal density distributions to study the adsorption and desorption of argon in finite as well as infinite cylindrical nanopores at 87.3 K. Features that have not been observed before with one-dimensional NLDFT are observed in the analysis of an inhomogeneous fluid along the axis of a finite cylindrical pore using the two-dimensional version of the NLDFT. The phase transition in pore is not strictly vapor-liquid transition as assumed and observed in the conventional version, but rather it exhibits a much elaborated feature with phase transition being complicated by the formation of solid phase. Depending on the pore size, there are more than one phase transition in the adsorption-desorption isotherm. The solid formation in finite pore has been found to be initiated by the presence of the meniscus. Details of the analysis of the extended version of NLDFT will be discussed in the paper. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of argon at its boiling point infinite cylindrical pores is considered by means of the non-local density functional theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore filling and empting in the form of contour lines is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen adsorption on a surface of a non-porous reference material is widely used in the characterization. Traditionally, the enhancement of solid-fluid potential in a porous solid is accounted for by incorporating the surface curvature into the solid-fluid Potential of the flat reference surface. However, this calculation procedure has not been justified experimentally. In this paper, we derive the solid-fluid potential of mesoporous MCM-41 solid by using solely the adsorption isotherm of that solid. This solid-fluid potential is then compared with that of the non-porous reference surface. In derivation of the solid-fluid potential for both reference surface and mesoporous MCM-41 silica (diameter ranging front 3 to 6.5 nm) we employ the nonlocal density functional theory developed for amorphous solids. It is found that, to out, surprise, the solid-fluid potential of a porous solid is practically the same as that for the reference surface, indicating that there is no enhancement due to Surface curvature. This requires further investigations to explain this unusual departure from our conventional wisdom of curvature-induced enhancement. Accepting the curvature-independent solid-fluid potential derived from the non-porous reference surface, we analyze the hysteresis features of a series of MCM-41 samples. (c) 2005 Elsevier Inc. All rights reserved.