71 resultados para COMPLEX STRUCTURE

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have determined the three-dimensional structure of the protein complex between latexin and carboxypeptidase A using a combination of chemical cross-linking, mass spectrometry and molecular docking. The locations of three intermolecular cross-links were identified using mass spectrometry and these constraints were used in combination with a speed-optimised docking algorithm allowing us to evaluate more than 3 x 10(11) possible conformations. While cross-links represent only limited structural constraints, the combination of only three experimental cross-links with very basic molecular docking was sufficient to determine the complex structure. The crystal structure of the complex between latexin and carboxypeptidase A4 determined recently allowed us to assess the success of this structure determination approach. Our structure was shown to be within 4 angstrom r.m.s. deviation of C alpha atoms of the crystal structure. The study demonstrates that cross-linking in combination with mass spectrometry can lead to efficient and accurate structural modelling of protein complexes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 12-membered macrocyclic ligand 1-thia-4,7, 10-triazacyclododecane ([12]aneN(3)S) has been synthesised, although upon crystallization from acetonitrile a product in which carbon dioxide had added to one secondary amine in the macrocyclic ring (H[12]aneN(3)SCO(2). H2O) was isolated and subsequently characterised by X-ray crystallography. The protonation constants for [12]aneN(3)S and stability constants with Zn(II), Pb(II), Cd(II) and Cu(II) have been determined either potentiometrically or spectrophotometrically in aqueous solution, and compared with those measured or reported for the ligands 1-oxa-4,7,10-triazacyclododecane ([12]aneN(3)O) and 1,4,7,10-tetraazacyclododecane ([12]aneN(4)). The magnitudes of the stability constants are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors although the stability constant for the [Hg([12]aneN(4))](2+) complex has been estimated from an NMR experiment to be at least three orders of magnitude larger than reported previously. Zinc(II), mercury(II), lead(II), copper(II) and nickel(II) complexes of [12]aneN(3)S have been isolated and characterised by X-ray crystallography. In the case of copper(II), two complexes [Cu([12]aneN(3)S)(H2O)](ClO4)(2) and [Cu-2([12]aneN(3)S)(2)(OH)(2)](ClO4)(2) were isolated, depending on the conditions employed. Molecular mechanics calculations have been employed to investigate the relative metal ion size preferences of the [3333], asym-[2424] and sym-[2424] conformation isomers. The calculations predict that the asym-[2424] conformer is most stable for M-N bond lengths in the range 2.00-2.25 Angstrom whilst for the larger metal ions the [3333] conformer is dominant. The disorder seen in the structure of the [Zn([12]aneN(3)S)(NO3)](+) complex is also explained by the calculations. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basis of the present authors' edge-to-edge matching model for understanding the crystallography of partially coherent precipitates is the minimization of the energy of the interface between the two phases. For relatively simple crystal structures, this energy minimization occurs when close-packed, or relatively close-packed, rows of atoms match across the interface. Hence, the fundamental principle behind edge-to-edge matching is that the directions in each phase that correspond to the edges of the planes that meet in the interface should be close-packed, or relatively close-packed, rows of atoms. A few of the recently reported examples of what is termed edge-to-edge matching appear to ignore this fundamental principle. By comparing theoretical predictions with available experimental data, this article will explore the validity of this critical atom-row coincidence condition, in situations where the two phases have simple crystal Structures and in those where the precipitate has a more complex structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binuclear complex [NBu4n](4)[Cr-2(ox)(5)]. 2CHCl(3) has been prepared by an ion-exchange procedure employing Dowex 50WX2 cation-exchange resin in the n-butylammonium form and potassium tris(oxalato)chromate(III). The dimeric complex was characterised by a crystal structure determination: monoclinic, space group C2/c, a = 29.241(7), b = 15.192(2), c = 22.026(5) Angstrom, beta = 94.07(1)degrees, Z = 4. The magnetic susceptibility (300-4.2 K) indicated that the chromium(III) sites were antiferromagnetically coupled (J = -3.1 cm(-1)).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its Fe-III complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to Fe-III in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH-H)(2)](+) shows that the trivalent oxidation state is dominant over a wide potential range and that the Fe-II analogue is not a stable form of this complex. The fact that [Fe(NIH-H)(2)](+) cannot-cycle between the Fe-II and Fe-III states suggests that the production of toxic free- radical species, e.g. OH. or O2(.-),is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of Fe-III to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its Fe-III complex are discussed in the context of understanding its anti-tumour activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pentadentate chelating agent, 2,6-diacetylpyridinebis(S-benzyldithiocarbazate) (H2SNNNS) reacts with zinc(II) and cadmium(II) ions forming stable complexes of empirical formula, [M(SNNNS)] (M=Zn2+, Cd2+; SNNNS2 =doubly deprotonated anionic form of the Schiff base). These complexes have been characterized by a variety of physico-chemical techniques. IR and H-1 NMR spectral evidence indicate that the Schiff base coordinates to the zinc(II) and cadmium(II) ions via the pyridine nitrogen atoms, the azomethine nitrogen atoms and the mercaptide sulfur atoms. The crystal and molecular structure of the zinc(II) complex has been determined by X-ray diffraction. The complex is a dimer in which the pyridine nitrogen atom,the azomethine nitrogen atom and the thiolate sulfur atom from one ligand coordinate to one of the zinc(II) ions whereas the azomethine and thiolate sulfur atoms from another ligand complete pentacoordination around the zinc(II) ion, the ligands being coordinated in their deprotonated forms. The coordination geometry about each zinc(II) can be considered as intermediate between a square-pyramid and trigonal-bipyramid. The cadmium(II) complex is also assigned with a dimeric structure. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The houbara bustard, Chlamydotis undulata, is a declining cryptic desert bird whose range extends from North Africa to Central Asia. Three subspecies are currently recognized by geographical distribution and morphology: C.u.fuertaventurae, C.u.undulata and C.u.macqueenii. We have sequenced 854 bp of mitochondrial control region from 73 birds to describe their population genetic structure with a particular sampling focus on the connectivity between C.u.fuertaventurae and C.u.undulata along the Atlantic seaboard of North Africa. Nucleotide and haplotypic diversity varied among the subspecies being highest in C.u.undulata, lowest in C.u.fuertaventurae and intermediate in C.u.macqueenii. C.u.fuertaventurae and C.u.undulata are paraphyletic and an average nucleotide divergence of 2.08% splits the later from C.u.macqueenii. We estimate that C.u.fuertaventurae and C.u.undulata split from C.u.macqueenii approximately 430 000 years ago. C.u.fuertaventurae and C.u.undulata are weakly differentiated (F-ST = 0.27, N-m = 1.3), indicative of a recent shared history. Archaeological evidence indicates that houbara bustards have been present on the Canary Islands for 130-170 000 years. However, our genetic data point to a more recent separation of C.u.fuertaventurae and C.u.undulata at around 20-25 000 years. Concordant archaeological, climatic opportunities for colonization and genetic data point to a scenario of: (i) initial colonization of the Canary Islands about 130 000 years ago; (ii) a period of secondary contact 19-30 000 years ago homogenizing any pre-existing genetic structure followed by; (iii) a period of relative isolation that persists today.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to D-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and D-camphor are C-10 monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 Angstrom resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe2S2 redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

3D electron tomography studies of the structure of the mammalian Golgi complex have led to four functional predictions (1). The sorting and exit site from the Golgi comprises two or three distinct trans-cisternae (2). The docking of vesicular-tubular clusters at the cis-face and the fragmentation of trans-cisternae are coordinated (3). The mechanisms of transport through, and exit from, the Golgi vary with physiological state, and in different cells and tissues (4). Specialized trans-ER functions in the delivery of ceramide to sphingomyelin synthase in the trans-Golgi membrane, for the regulated sorting via sphingolipid-cholesterol-rich domains. These structure-based predictions can now be tested using a variety of powerful cell and molecular tools.