3 resultados para COMMISSIONING

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current design procedures for Subsurface Flow (SSF) Wetlands are based on the simplifying assumptions of plug flow and first order decay of pollutants. These design procedures do yield functional wetlands but result in over-design and inadequate descriptions of the pollutant removal mechanisms which occur within them. Even though these deficiencies are often noted, few authors have attempted to improve modelling of either flow or pollutant removal in such systems. Consequently the Oxley Creek Wetland, a pilot scale SSF wetland designed to enable rigorous monitoring, has recently been constructed in Brisbane, Australia. Tracer studies have been carried out in order to determine the hydraulics of this wetland prior to commissioning it with sealed sewage. The tracer studies will continue during the wetland's commissioning and operational phases. These studies will improve our understanding of the hydraulics of newly built SSF wetlands and the changes brought on by operational factors such as biological films and wetland plant root structures. Results to date indicate that the flow through the gravel beds is not uniform and cannot be adequately modelled by a single parameter, plug flow with dispersion, model. We have developed a multiparameter model, incorporating four plug flow reactors, which provides a better approximation of our experimental data. With further development this model will allow improvements to current SSF wetland design procedures and operational strategies, and will underpin investigations into the pollutant removal mechanisms at the Oxley Creek Wetland. (C) 1997 IAWQ. Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was

Relevância:

10.00% 10.00%

Publicador:

Resumo:

West Nile virus (WNV) is a mosquito-borne flavivirus that is emerging as a global pathogen. In the last decade, virulent strains of the virus have been associated with significant outbreaks of human and animal disease in Europe, the Middle East and North America. Efforts to develop human and veterinary vaccines have taken both traditional and novel approaches. A formalin-inactivated whole virus vaccine has been approved for use in horses. DNA vaccines coding for the structural WNV proteins have also been assessed for veterinary use and have been found to be protective in mice, horses and birds. Live attenuated yellow fever WNV chimeric vaccines have also been successful in animals and are currently undergoing human trials. Additional studies have shown that immunisation with a relatively benign Australian variant of WNV, the Kunjin virus, also provides protective immunity against the virulent North American strain. Levels of efficacy and safety, as well as logistical, economic and environmental issues, must all be carefully considered before vaccine candidates are approved and selected for large-scale manufacture and distribution.